Conservation planning involves targeted management practices and land use decision-making based on careful analysis of landscape limitations in order to protect soil and water resources. Developing solutions to conservation planning is of worldwide interest due to anticipated population growth, growing demand of feedstocks for biofuels, decreasing
Tropical habitats may contain more than a third of the world's plant and animal species; Costa Rica alone is home to one of the highest levels of biodiversity per unit area in the world, and stands at center stage in worldwide conservation efforts. Within such regions, the use of state-of-the-art digital mapping technologies—sophisticated techniques that are relatively inexpensive and accessible—represents the future of conservation planning and policy. These methods, which employ satellites to obtain visual data on landscapes, allow environmental scientists to monitor encroachment on indigenous territories, trace park boundaries through unmarked wilderness, and identify wildlife habitats in regions where humans have limited access. Focusing on the rich biodiversity of Costa Rica, the contributors demonstrate the use of geographic information systems (GIS) to enhance conservation efforts. They give an overview of the spatial nature of conservation and management and the current status of digital mapping in Costa Rica; a review of the basic principles behind digital mapping technologies; a series of case studies using these technologies at a variety of scales and for a range of conservation and management activities; and the results of the Costa Rican gap analysis project. GIS Methodologies for Developing Conservation Strategies provides powerful tools for those involved in decision-making about the natural environment, particularly in developing nations like Costa Rica where such technologies have not yet been widely adopted. For specialists in such areas as geography, conservation biology, and wildlife and natural resource management, the combination of conceptual background and case examples make the book a crucial addition to the literature.
Hugh P. Possingham Landscape-scale conservation planning is coming of age. In the last couple of decades, conservation practitioners, working at all levels of governance and all spatial scales, have embraced the CARE principles of conservation planning – Comprehensiveness, Adequacy, Representativeness, and Efficiency. Hundreds of papers have been written on this theme, and several different kinds of software program have been developed and used around the world, making conservation planning based on these principles global in its reach and influence. Does this mean that all the science of conservation planning is over – that the discovery phase has been replaced by an engineering phase as we move from defining the rules to implementing them in the landscape? This book and the continuing growth in the literature suggest that the answer to this question is most definitely ‘no. ’ All of applied conservation can be wrapped up into a single sentence: what should be done (the action), in what place, at what time, using what mechanism, and for what outcome (the objective). It all seems pretty simple – what, where, when, how and why. However stating a problem does not mean it is easy to solve.
This work presents cases studies of applications of Geotechnology such as Geography Information Systems, virtual reality and cellular automaton and multi-agent systems in the field of urban planning and design.These are joint research presentations with students and colleagues from Kanazawa University. All these case studies are about application in Japanese or Chinese cities, which are on-field examples reflecting the enormous spread of geo-computation technology. Nevertheless, the concepts have wide applicability to other contexts. The works can be classified into three types of Geotechnological applications at different levels of urban spaces, which are relevant to different kinds of urban planning and development projects. The book is comprised of three parts: Part 1: Geosimulation and land use plan Part 2: Geo Visualization and urban design Part 3: Geography information system and planning support
Developments in technologies have evolved in a much wider use of technology throughout science, government, and business; resulting in the expansion of geographic information systems. GIS is the academic study and practice of presenting geographical data through a system designed to capture, store, analyze, and manage geographic information. Geographic Information Systems: Concepts, Methodologies, Tools, and Applications is a collection of knowledge on the latest advancements and research of geographic information systems. This book aims to be useful for academics and practitioners involved in geographical data.