Medical and Health Genomics provides concise and evidence-based technical and practical information on the applied and translational aspects of genome sciences and the technologies related to non-clinical medicine and public health. Coverage is based on evolving paradigms of genomic medicine—in particular, the relation to public and population health genomics now being rapidly incorporated in health management and administration, with further implications for clinical population and disease management. - Provides extensive coverage of the emergent field of health genomics and its huge relevance to healthcare management - Presents user-friendly language accompanied by explanatory diagrams, figures, and many references for further study - Covers the applied, but non-clinical, sciences across disease discovery, genetic analysis, genetic screening, and prevention and management - Details the impact of clinical genomics across a diverse array of public and community health issues, and within a variety of global healthcare systems
Genomics is a new and fast expanding area of biology encompassing high throughput or large scale experimentation at the whole genome level, and the organization, analysis and interpretation of the huge amount of data emerging from genome projects. Major new technologies have evolved recently that enable experimentation at the whole genome level, and more novel technologies are currently being developed. This volume describes in detail the new technology necessary to study the entire genome in a holistic manner and all the high throughput and large-scale experimental methodologies currently being used in genomic science. In addition the authors describe the progress of the newest technologies that are currently being developed. Written by experts in the field, this concise yet informative volume covers all aspects of technology pertaining to genomic studies. It is an essential book for anyone involved in genomic science.
The new field of toxicogenomics presents a potentially powerful set of tools to better understand the health effects of exposures to toxicants in the environment. At the request of the National Institute of Environmental Health Sciences, the National Research Council assembled a committee to identify the benefits of toxicogenomics, the challenges to achieving them, and potential approaches to overcoming such challenges. The report concludes that realizing the potential of toxicogenomics to improve public health decisions will require a concerted effort to generate data, make use of existing data, and study data in new waysâ€"an effort requiring funding, interagency coordination, and data management strategies.
Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.
The patenting and licensing of human genetic material and proteins represents an extension of intellectual property (IP) rights to naturally occurring biological material and scientific information, much of it well upstream of drugs and other disease therapies. This report concludes that IP restrictions rarely impose significant burdens on biomedical research, but there are reasons to be apprehensive about their future impact on scientific advances in this area. The report recommends 13 actions that policy-makers, courts, universities, and health and patent officials should take to prevent the increasingly complex web of IP protections from getting in the way of potential breakthroughs in genomic and proteomic research. It endorses the National Institutes of Health guidelines for technology licensing, data sharing, and research material exchanges and says that oversight of compliance should be strengthened. It recommends enactment of a statutory exception from infringement liability for research on a patented invention and raising the bar somewhat to qualify for a patent on upstream research discoveries in biotechnology. With respect to genetic diagnostic tests to detect patient mutations associated with certain diseases, the report urges patent holders to allow others to perform the tests for purposes of verifying the results.
Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.
There is growing enthusiasm in the scientific community about the prospect of mapping and sequencing the human genome, a monumental project that will have far-reaching consequences for medicine, biology, technology, and other fields. But how will such an effort be organized and funded? How will we develop the new technologies that are needed? What new legal, social, and ethical questions will be raised? Mapping and Sequencing the Human Genome is a blueprint for this proposed project. The authors offer a highly readable explanation of the technical aspects of genetic mapping and sequencing, and they recommend specific interim and long-range research goals, organizational strategies, and funding levels. They also outline some of the legal and social questions that might arise and urge their early consideration by policymakers.
A sharp-eyed exploration of the promise and peril of having children in an age of genetic tests and interventions Is screening for disease in an embryo a humane form of family planning or a slippery slope toward eugenics? Should doctors tell you that your infant daughter is genetically predisposed to breast cancer? If tests revealed that your toddler has a genetic mutation whose significance isn’t clear, would you want to know? In The Gene Machine, the award-winning journalist Bonnie Rochman deftly explores these hot-button questions, guiding us through the new frontier of gene technology and how it is transforming medicine, bioethics, health care, and the factors that shape a family. Rochman tells the stories of scientists working to unlock the secrets of the human genome; genetic counselors and spiritual advisers guiding mothers and fathers through life-changing choices; and, of course, parents (including Rochman herself) grappling with revelations that are sometimes joyous, sometimes heartbreaking, but always profound. She navigates the dizzying and constantly expanding array of prenatal and postnatal tests, from carrier screening to genome sequencing, while considering how access to more tests is altering perceptions of disability and changing the conversation about what sort of life is worth living and who draws the line. Along the way, she highlights the most urgent ethical quandary: Is this technology a triumph of modern medicine or a Pandora’s box of possibilities? Propelled by human narratives and meticulously reported, The Gene Machine is both a scientific road map and a meditation on our power to shape the future. It is a book that gets to the very core of what it means to be human.
Genomics is a rapidly growing scientific field with applications ranging from improved disease resistance to increased rate of growth. Aquaculture Genome Technologies comprehensively covers the field of genomics and its applications to the aquaculture industry. This volume looks to bridge the gap between a basic understanding of genomic technology to its practical use in the aquaculture industry.