Specialty Corns

Specialty Corns

Author: Arnel R. Hallauer

Publisher: CRC Press

Published: 2000-08-23

Total Pages: 492

ISBN-13: 1420038567

DOWNLOAD EBOOK

Completely revised and updated, the Second Edition of Specialty Corns includes everything in the first edition and more. Considered the standard in this field, significant changes have been made to keep all the information current and bring the references up-to-date. Two new chapters have been added to keep up with the latest trends: Blue Corn and


Developing Drought and Low N-tolerant Maize

Developing Drought and Low N-tolerant Maize

Author: G. O. Edmeades

Publisher: CIMMYT

Published: 1996

Total Pages: 580

ISBN-13: 9789686923933

DOWNLOAD EBOOK

Incidence and intensity of drought and low N stresss in the tropics; Case studies strategies for crop production under drought and low n stresses in the tropics; Stress physology and identification of secondary traits; Physiology of low nitrogen stress; Breeding for tolerance to drought and low n stresses; General breeding strategies for stress tolerance; Progress in breeding drought tolerance; Progress in breeding low nitrogen tolerance; Experimental design and software.


Maize in Human Nutrition

Maize in Human Nutrition

Author: Food and Agriculture Organization of the United Nations

Publisher: Food & Agriculture Org.

Published: 1992

Total Pages: 172

ISBN-13: 9789251030134

DOWNLOAD EBOOK


Breeding for drought and nitrogen stress tolerance in maize: From theory to practice

Breeding for drought and nitrogen stress tolerance in maize: From theory to practice

Author: M. Bänzinger

Publisher: CIMMYT

Published: 2000

Total Pages: 69

ISBN-13: 9706480463

DOWNLOAD EBOOK

Introduction - why breed for drought and low N tolerance?; Conceptual framework - breeding; Conventional approaches to improving the drought and low N tolerance of maize; Conventional approaches challenged; The challenge of breeding for drought and low N tolerance; Maize under drought and low N stress; Conceptual framework - physiology; Water and the maize plant; Nitrogen and the maize plant; Maize under drought and low N stress - consequences for breeding; Stress management; Drought; Low N stress; Statistical designs and layout of experiments; Increasing the number of replicates; Improved statistical designs; Field layout; Border effects from alleys; Secondary traits; Why use secondary traits?; How do we decide on the value of secondary traits in a drought or low N breeding program?; Secondary traits that help to identify drought tolerance; Secondary traits that help to identify low N tolerance: Selection indices - Combining information on secondary traits with grain yield; Combining information from various experiments; Breeding strategies; Choice of germplasm; Breeding schemes; Biotechnology: potential and constraints for improving drought and low N tolerance; The role of the farmer in selection; What is farmer participatory research and why is it important?; What is new about farmer participatory research?; Participatory methodologies.


The Maize Genome

The Maize Genome

Author: Jeffrey Bennetzen

Publisher: Springer

Published: 2018-11-24

Total Pages: 390

ISBN-13: 3319974270

DOWNLOAD EBOOK

This book discusses advances in our understanding of the structure and function of the maize genome since publication of the original B73 reference genome in 2009, and the progress in translating this knowledge into basic biology and trait improvement. Maize is an extremely important crop, providing a large proportion of the world’s human caloric intake and animal feed, and serving as a model species for basic and applied research. The exceptionally high level of genetic diversity within maize presents opportunities and challenges in all aspects of maize genetics, from sequencing and genotyping to linking genotypes to phenotypes. Topics covered in this timely book range from (i) genome sequencing and genotyping techniques, (ii) genome features such as centromeres and epigenetic regulation, (iii) tools and resources available for trait genomics, to (iv) applications of allele mining and genomics-assisted breeding. This book is a valuable resource for researchers and students interested in maize genetics and genomics.


Quantitative Genetics in Maize Breeding

Quantitative Genetics in Maize Breeding

Author: Arnel R. Hallauer

Publisher: Springer Science & Business Media

Published: 2010-09-28

Total Pages: 669

ISBN-13: 1441907661

DOWNLOAD EBOOK

Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm


Tropical Maize

Tropical Maize

Author: R. L. Paliwal

Publisher: Fao

Published: 2000

Total Pages: 384

ISBN-13:

DOWNLOAD EBOOK

Maize is an important crop and the demand for as both food and animal feed is expected to grow by 235 million tonnes between now and 2030. In many countries it will be difficult to increase the area under cultivation, so gains will have to come from increased productivity and intensification of the cropping system. This book looks at all aspects of tropical maize production from physiology, growing environments, pest and diseases, plant breeding and crop management and it is a substantial information resource necessary for the development of the crop.


Carotenoids and Human Health

Carotenoids and Human Health

Author: Sherry A. Tanumihardjo

Publisher: Springer Science & Business Media

Published: 2012-11-28

Total Pages: 344

ISBN-13: 1627032037

DOWNLOAD EBOOK

Carotenoids and Human Health provides an introduction to food sources and metabolism. Written by experts in their fields and including the most up-to-date information, this volume serves as an in-depth guide to studies that have been performed in humans and observations that have been made in population level assessments. Special emphasis is given to associations with disease, as well as the importance of carotenoids internationally, specifically as a source of vitamin A for the world. Comprehensive and easy to use, Carotenoids and Human Health is a very useful resource for nutritionists, registered dieticians, medical students, and graduate students.