Genetic Algorithms: Principles and Perspectives

Genetic Algorithms: Principles and Perspectives

Author: Colin R. Reeves

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 337

ISBN-13: 0306480506

DOWNLOAD EBOOK

Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory is a survey of some important theoretical contributions, many of which have been proposed and developed in the Foundations of Genetic Algorithms series of workshops. However, this theoretical work is still rather fragmented, and the authors believe that it is the right time to provide the field with a systematic presentation of the current state of theory in the form of a set of theoretical perspectives. The authors do this in the interest of providing students and researchers with a balanced foundational survey of some recent research on GAs. The scope of the book includes chapter-length discussions of Basic Principles, Schema Theory, "No Free Lunch", GAs and Markov Processes, Dynamical Systems Model, Statistical Mechanics Approximations, Predicting GA Performance, Landscapes and Test Problems.


Genetic Algorithm Essentials

Genetic Algorithm Essentials

Author: Oliver Kramer

Publisher: Springer

Published: 2017-01-07

Total Pages: 94

ISBN-13: 331952156X

DOWNLOAD EBOOK

This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.


Genetic Algorithms: Principles and Perspectives

Genetic Algorithms: Principles and Perspectives

Author: Colin Reeves

Publisher: Springer Science & Business Media

Published: 2002-12-31

Total Pages: 337

ISBN-13: 1402072406

DOWNLOAD EBOOK

Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory is a survey of some important theoretical contributions, many of which have been proposed and developed in the Foundations of Genetic Algorithms series of workshops. However, this theoretical work is still rather fragmented, and the authors believe that it is the right time to provide the field with a systematic presentation of the current state of theory in the form of a set of theoretical perspectives. The authors do this in the interest of providing students and researchers with a balanced foundational survey of some recent research on GAs. The scope of the book includes chapter-length discussions of Basic Principles, Schema Theory, "No Free Lunch", GAs and Markov Processes, Dynamical Systems Model, Statistical Mechanics Approximations, Predicting GA Performance, Landscapes and Test Problems.


The Practical Handbook of Genetic Algorithms

The Practical Handbook of Genetic Algorithms

Author: Lance D. Chambers

Publisher: CRC Press

Published: 2019-09-17

Total Pages: 438

ISBN-13: 1420050079

DOWNLOAD EBOOK

The mathematics employed by genetic algorithms (GAs)are among the most exciting discoveries of the last few decades. But what exactly is a genetic algorithm? A genetic algorithm is a problem-solving method that uses genetics as its model of problem solving. It applies the rules of reproduction, gene crossover, and mutation to pseudo-organism


Evolutionary Learning Algorithms for Neural Adaptive Control

Evolutionary Learning Algorithms for Neural Adaptive Control

Author: Dimitris C. Dracopoulos

Publisher: Springer

Published: 2013-12-21

Total Pages: 214

ISBN-13: 1447109031

DOWNLOAD EBOOK

Evolutionary Learning Algorithms for Neural Adaptive Control is an advanced textbook, which investigates how neural networks and genetic algorithms can be applied to difficult adaptive control problems which conventional results are either unable to solve , or for which they can not provide satisfactory results. It focuses on the principles involved, rather than on the modelling of the applications themselves, and therefore provides the reader with a good introduction to the fundamental issues involved.


Proceedings of the First International Conference on Genetic Algorithms and their Applications

Proceedings of the First International Conference on Genetic Algorithms and their Applications

Author: John J. Grefenstette

Publisher: Psychology Press

Published: 2014-01-02

Total Pages: 345

ISBN-13: 1317760247

DOWNLOAD EBOOK

Computer solutions to many difficult problems in science and engineering require the use of automatic search methods that consider a large number of possible solutions to the given problems. This book describes recent advances in the theory and practice of one such search method, called Genetic Algorithms. Genetic algorithms are evolutionary search techniques based on principles derived from natural population genetics, and are currently being applied to a variety of difficult problems in science, engineering, and artificial intelligence.


Genetic Algorithms in Search, Optimization, and Machine Learning

Genetic Algorithms in Search, Optimization, and Machine Learning

Author: David Edward Goldberg

Publisher: Addison-Wesley Professional

Published: 1989

Total Pages: 436

ISBN-13:

DOWNLOAD EBOOK

A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.


Introduction to Genetic Algorithms

Introduction to Genetic Algorithms

Author: S.N. Sivanandam

Publisher: Springer Science & Business Media

Published: 2007-10-24

Total Pages: 453

ISBN-13: 3540731903

DOWNLOAD EBOOK

This book offers a basic introduction to genetic algorithms. It provides a detailed explanation of genetic algorithm concepts and examines numerous genetic algorithm optimization problems. In addition, the book presents implementation of optimization problems using C and C++ as well as simulated solutions for genetic algorithm problems using MATLAB 7.0. It also includes application case studies on genetic algorithms in emerging fields.


Metaheuristic Clustering

Metaheuristic Clustering

Author: Swagatam Das

Publisher: Springer Science & Business Media

Published: 2009-03-24

Total Pages: 266

ISBN-13: 3540921729

DOWNLOAD EBOOK

Cluster analysis means the organization of an unlabeled collection of objects or patterns into separate groups based on their similarity. The task of computerized data clustering has been approached from diverse domains of knowledge like graph theory, multivariate analysis, neural networks, fuzzy set theory, and so on. Clustering is often described as an unsupervised learning method but most of the traditional algorithms require a prior specification of the number of clusters in the data for guiding the partitioning process, thus making it not completely unsupervised. Modern data mining tools that predict future trends and behaviors for allowing businesses to make proactive and knowledge-driven decisions, demand fast and fully automatic clustering of very large datasets with minimal or no user intervention. In this volume, we formulate clustering as an optimization problem, where the best partitioning of a given dataset is achieved by minimizing/maximizing one (single-objective clustering) or more (multi-objective clustering) objective functions. Using several real world applications, we illustrate the performance of several metaheuristics, particularly the Differential Evolution algorithm when applied to both single and multi-objective clustering problems, where the number of clusters is not known beforehand and must be determined on the run. This volume comprises of 7 chapters including an introductory chapter giving the fundamental definitions and the last Chapter provides some important research challenges. Academics, scientists as well as engineers engaged in research, development and application of optimization techniques and data mining will find the comprehensive coverage of this book invaluable.


Handbook of Metaheuristics

Handbook of Metaheuristics

Author: Fred W. Glover

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 560

ISBN-13: 0306480565

DOWNLOAD EBOOK

This book provides both the research and practitioner communities with a comprehensive coverage of the metaheuristic methodologies that have proven to be successful in a wide variety of real-world problem settings. Moreover, it is these metaheuristic strategies that hold particular promise for success in the future. The various chapters serve as stand alone presentations giving both the necessary background underpinnings as well as practical guides for implementation.