Genetic Algorithm Essentials

Genetic Algorithm Essentials

Author: Oliver Kramer

Publisher: Springer

Published: 2017-01-07

Total Pages: 94

ISBN-13: 331952156X

DOWNLOAD EBOOK

This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.


An Introduction to Genetic Algorithms

An Introduction to Genetic Algorithms

Author: Melanie Mitchell

Publisher: MIT Press

Published: 1998-03-02

Total Pages: 226

ISBN-13: 9780262631853

DOWNLOAD EBOOK

Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.


Genetic Algorithms and Machine Learning for Programmers

Genetic Algorithms and Machine Learning for Programmers

Author: Frances Buontempo

Publisher:

Published: 2019

Total Pages: 0

ISBN-13: 9781680506204

DOWNLOAD EBOOK

Self-driving cars, natural language recognition, and online recommendation engines are all possible thanks to machine learning. Discover machine learning algorithms using a handful of self-contained recipes. Create your own genetic algorithms, nature-inspired swarms, Monte Carlo simulations, and cellular automata. Find minima and maxima, using hill climbing and simulated annealing. Try selection mathods, including tournament and roulette wheels. Learn about heuristics, fitness functions, metrics, and clusters.


Multiobjective Scheduling by Genetic Algorithms

Multiobjective Scheduling by Genetic Algorithms

Author: Tapan P. Bagchi

Publisher: Springer Science & Business Media

Published: 1999-08-31

Total Pages: 384

ISBN-13: 9780792385615

DOWNLOAD EBOOK

Multiobjective Scheduling by Genetic Algorithms describes methods for developing multiobjective solutions to common production scheduling equations modeling in the literature as flowshops, job shops and open shops. The methodology is metaheuristic, one inspired by how nature has evolved a multitude of coexisting species of living beings on earth. Multiobjective flowshops, job shops and open shops are each highly relevant models in manufacturing, classroom scheduling or automotive assembly, yet for want of sound methods they have remained almost untouched to date. This text shows how methods such as Elitist Nondominated Sorting Genetic Algorithm (ENGA) can find a bevy of Pareto optimal solutions for them. Also it accents the value of hybridizing Gas with both solution-generating and solution-improvement methods. It envisions fundamental research into such methods, greatly strengthening the growing reach of metaheuristic methods. This book is therefore intended for students of industrial engineering, operations research, operations management and computer science, as well as practitioners. It may also assist in the development of efficient shop management software tools for schedulers and production planners who face multiple planning and operating objectives as a matter of course.


Genetic Algorithms in Electromagnetics

Genetic Algorithms in Electromagnetics

Author: Randy L. Haupt

Publisher: John Wiley & Sons

Published: 2007-04-27

Total Pages: 317

ISBN-13: 0470106271

DOWNLOAD EBOOK

A thorough and insightful introduction to using genetic algorithms to optimize electromagnetic systems Genetic Algorithms in Electromagnetics focuses on optimizing the objective function when a computer algorithm, analytical model, or experimental result describes the performance of an electromagnetic system. It offers expert guidance to optimizing electromagnetic systems using genetic algorithms (GA), which have proven to be tenacious in finding optimal results where traditional techniques fail. Genetic Algorithms in Electromagnetics begins with an introduction to optimization and several commonly used numerical optimization routines, and goes on to feature: Introductions to GA in both binary and continuous variable forms, complete with examples of MATLAB(r) commands Two step-by-step examples of optimizing antenna arrays as well as a comprehensive overview of applications of GA to antenna array design problems Coverage of GA as an adaptive algorithm, including adaptive and smart arrays as well as adaptive reflectors and crossed dipoles Explanations of the optimization of several different wire antennas, starting with the famous "crooked monopole" How to optimize horn, reflector, and microstrip patch antennas, which require significantly more computing power than wire antennas Coverage of GA optimization of scattering, including scattering from frequency selective surfaces and electromagnetic band gap materials Ideas on operator and parameter selection for a GA Detailed explanations of particle swarm optimization and multiple objective optimization An appendix of MATLAB code for experimentation


Genetic Algorithms

Genetic Algorithms

Author: Kim-Fung Man

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 346

ISBN-13: 144710577X

DOWNLOAD EBOOK

This comprehensive book gives a overview of the latest discussions in the application of genetic algorithms to solve engineering problems. Featuring real-world applications and an accompanying disk, giving the reader the opportunity to use an interactive genetic algorithms demonstration program.


Introduction to Genetic Algorithms

Introduction to Genetic Algorithms

Author: S.N. Sivanandam

Publisher: Springer Science & Business Media

Published: 2007-10-24

Total Pages: 453

ISBN-13: 3540731903

DOWNLOAD EBOOK

This book offers a basic introduction to genetic algorithms. It provides a detailed explanation of genetic algorithm concepts and examines numerous genetic algorithm optimization problems. In addition, the book presents implementation of optimization problems using C and C++ as well as simulated solutions for genetic algorithm problems using MATLAB 7.0. It also includes application case studies on genetic algorithms in emerging fields.


Genetic Algorithms in Search, Optimization, and Machine Learning

Genetic Algorithms in Search, Optimization, and Machine Learning

Author: David Edward Goldberg

Publisher: Addison-Wesley Professional

Published: 1989

Total Pages: 436

ISBN-13:

DOWNLOAD EBOOK

A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.


The Simple Genetic Algorithm

The Simple Genetic Algorithm

Author: Michael D. Vose

Publisher: MIT Press

Published: 1999

Total Pages: 650

ISBN-13: 9780262220583

DOWNLOAD EBOOK

Content Description #"A Bradford book."#Includes bibliographical references (p.) and index.


Genetic Algorithms and Genetic Programming

Genetic Algorithms and Genetic Programming

Author: Michael Affenzeller

Publisher: CRC Press

Published: 2009-04-09

Total Pages: 395

ISBN-13: 1420011324

DOWNLOAD EBOOK

Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications discusses algorithmic developments in the context of genetic algorithms (GAs) and genetic programming (GP). It applies the algorithms to significant combinatorial optimization problems and describes structure identification using HeuristicLab as a platform for al