Semi-Infinite Programming

Semi-Infinite Programming

Author: Miguel Ángel Goberna

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 392

ISBN-13: 1475734034

DOWNLOAD EBOOK

Semi-infinite programming (SIP) deals with optimization problems in which either the number of decision variables or the number of constraints is finite. This book presents the state of the art in SIP in a suggestive way, bringing the powerful SIP tools close to the potential users in different scientific and technological fields. The volume is divided into four parts. Part I reviews the first decade of SIP (1962-1972). Part II analyses convex and generalised SIP, conic linear programming, and disjunctive programming. New numerical methods for linear, convex, and continuously differentiable SIP problems are proposed in Part III. Finally, Part IV provides an overview of the applications of SIP to probability, statistics, experimental design, robotics, optimization under uncertainty, production games, and separation problems. Audience: This book is an indispensable reference and source for advanced students and researchers in applied mathematics and engineering.


Semi-Infinite Programming

Semi-Infinite Programming

Author: Rembert Reemtsen

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 418

ISBN-13: 1475728689

DOWNLOAD EBOOK

Semi-infinite programming (briefly: SIP) is an exciting part of mathematical programming. SIP problems include finitely many variables and, in contrast to finite optimization problems, infinitely many inequality constraints. Prob lems of this type naturally arise in approximation theory, optimal control, and at numerous engineering applications where the model contains at least one inequality constraint for each value of a parameter and the parameter, repre senting time, space, frequency etc., varies in a given domain. The treatment of such problems requires particular theoretical and numerical techniques. The theory in SIP as well as the number of numerical SIP methods and appli cations have expanded very fast during the last years. Therefore, the main goal of this monograph is to provide a collection of tutorial and survey type articles which represent a substantial part of the contemporary body of knowledge in SIP. We are glad that leading researchers have contributed to this volume and that their articles are covering a wide range of important topics in this subject. It is our hope that both experienced students and scientists will be well advised to consult this volume. We got the idea for this volume when we were organizing the semi-infinite pro gramming workshop which was held in Cottbus, Germany, in September 1996.


Bi-Level Strategies in Semi-Infinite Programming

Bi-Level Strategies in Semi-Infinite Programming

Author: Oliver Stein

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 219

ISBN-13: 1441991646

DOWNLOAD EBOOK

Semi-infinite optimization is a vivid field of active research. Recently semi infinite optimization in a general form has attracted a lot of attention, not only because of its surprising structural aspects, but also due to the large number of applications which can be formulated as general semi-infinite programs. The aim of this book is to highlight structural aspects of general semi-infinite programming, to formulate optimality conditions which take this structure into account, and to give a conceptually new solution method. In fact, under certain assumptions general semi-infinite programs can be solved efficiently when their bi-Ievel structure is exploited appropriately. After a brief introduction with some historical background in Chapter 1 we be gin our presentation by a motivation for the appearance of standard and general semi-infinite optimization problems in applications. Chapter 2 lists a number of problems from engineering and economics which give rise to semi-infinite models, including (reverse) Chebyshev approximation, minimax problems, ro bust optimization, design centering, defect minimization problems for operator equations, and disjunctive programming.


Approximation, Optimization and Mathematical Economics

Approximation, Optimization and Mathematical Economics

Author: Marc Lassonde

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 390

ISBN-13: 3642575927

DOWNLOAD EBOOK

The articles in this proceedings volume reflect the current trends in the theory of approximation, optimization and mathematical economics, and include numerous applications. The book will be of interest to researchers and graduate students involved in functional analysis, approximation theory, mathematical programming and optimization, game theory, mathematical finance and economics.


Linear Semi-Infinite Optimization

Linear Semi-Infinite Optimization

Author: Miguel A. Goberna

Publisher:

Published: 1998-03-11

Total Pages: 380

ISBN-13:

DOWNLOAD EBOOK

A linear semi-infinite program is an optimization problem with linear objective functions and linear constraints in which either the number of unknowns or the number of constraints is finite. The many direct applications of linear semi-infinite optimization (or programming) have prompted considerable and increasing research effort in recent years. The authors' aim is to communicate the main theoretical ideas and applications techniques of this fascinating area, from the perspective of convex analysis. The four sections of the book cover: * Modelling with primal and dual problems - the primal problem, space of dual variables, the dual problem. * Linear semi-infinite systems - existence theorems, alternative theorems, redundancy phenomena, geometrical properties of the solution set. * Theory of linear semi-infinite programming - optimality, duality, boundedness, perturbations, well-posedness. * Methods of linear semi-infinite programming - an overview of the main numerical methods for primal and dual problems. Exercises and examples are provided to illustrate both theory and applications. The reader is assumed to be familiar with elementary calculus, linear algebra and general topology. An appendix on convex analysis is provided to ensure that the book is self-contained. Graduate students and researchers wishing to gain a deeper understanding of the main ideas behind the theory of linear optimization will find this book to be an essential text.


New Tools of Economic Dynamics

New Tools of Economic Dynamics

Author: Jacek Leskow

Publisher: Springer Science & Business Media

Published: 2006-05-06

Total Pages: 397

ISBN-13: 3540284443

DOWNLOAD EBOOK

New Tools of Economic Dynamics gives an introduction and overview of recently developed methods and tools, most of them developed outside economics, to deal with the qualitative analysis of economic dynamics. It reports the results of a three-year research project by a European and Latin American network on the intersection of economics with mathematical, statistical, and computational methods and techniques. Focusing upon the evolution and manifold structure of complex dynamic phenomena, the book reviews and shows applications of a variety of tools, such as symbolic and coded dynamics, interacting agents models, microsimulation in econometrics, large-scale system analysis, and dynamical systems theory. It shows the potential of a comprehensive analysis of growth, fluctuations, and structural change along the lines indicated by pioneers like Harrod, Haavelmo, Hicks, Goodwin, Morishima, and it highlights the explanatory power of the qualitative approach they initiated.


Optimization with Multivalued Mappings

Optimization with Multivalued Mappings

Author: Stephan Dempe

Publisher: Springer Science & Business Media

Published: 2006-09-19

Total Pages: 281

ISBN-13: 0387342214

DOWNLOAD EBOOK

This book focuses on the tremendous development that has taken place recently in the field of of nondifferentiable nonconvex optimization. Coverage includes the formulation of optimality conditions using different kinds of generalized derivatives for set-valued mappings (such as, for example, the co-derivative of Mordukhovich), the opening of new applications (the calibration of water supply systems), and the elaboration of new solution algorithms (e.g., smoothing methods).


Convex Optimization

Convex Optimization

Author: Stephen P. Boyd

Publisher: Cambridge University Press

Published: 2004-03-08

Total Pages: 744

ISBN-13: 9780521833783

DOWNLOAD EBOOK

Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.