Multi-criteria decision making (MCDM) is the technique of selecting the best alternative from multiple alternatives and multiple conditions. The technique for order preference by similarity to an ideal solution (TOPSIS) is a crucial practical technique for ranking and selecting different options by using a distance measure. In this article, we protract the fuzzy TOPSIS technique to neutrosophic fuzzy TOPSIS, and prove the accuracy of the method by explaining the MCDM problem with single-value neutrosophic information, and use the method for supplier selection in the production industry.
The concept of the neutrosophic hypersoft set (NHSS) is a parameterized family that deals with the subattributes of the parameters and is a proper extension of the neutrosophic soft set to accurately assess the deficiencies, anxiety, and uncertainty in decision-making. Compared with existing research, NHSS can accommodate more uncertainty, which is the most significant technique for describing fuzzy information in the decision-making process.
This paper presents TOPSIS approach for multi attribute decision making in refined neutrosophic environment. The weights of each decision makers are considered as a single valued neutrosophic numbers.
Neutrosophic set (NS) was originally proposed by Smarandache to handle indeterminate and inconsistent information. It is a generalization of fuzzy sets and intuitionistic fuzzy sets. Wang and Smarandache proposed interval neutrosophic sets (INS) which is a special case of NSs and would be extensively applied to resolve practical issues. In this paper, we put forward generalized interval neutrosophic rough sets based on interval neutrosophic relations by combining interval neutrosophic sets with rough sets. We explore the hybrid model through constructive approach as well as axiomatic approach. On one hand, we define generalized interval neutrosophic lower and upper approximation operators through constructive approach. Moreover, we investigate the relevance between generalized interval neutrosophic lower (upper) approximation operators and particular interval neutrosophic relations. On the other hand, we study axiomatic characterizations of generalized interval neutrosophic approximation operators, and also show that different axiom sets of theoretical interval neutrosophic operators make sure the existence of different classes of INRs that yield the same interval neutrosophic approximation operators. Finally, we introduce generalized interval neutrosophic rough sets on two universes and a universal algorithm of multi-attribute decision making based on generalized interval neutrosophic rough sets on two universes. Besides, an example is given to demonstrate the validity of the new rough set model.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This sixth volume of Collected Papers includes 74 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2015-2021 by the author alone or in collaboration with the following 121 co-authors from 19 countries: Mohamed Abdel-Basset, Abdel Nasser H. Zaied, Abduallah Gamal, Amir Abdullah, Firoz Ahmad, Nadeem Ahmad, Ahmad Yusuf Adhami, Ahmed Aboelfetouh, Ahmed Mostafa Khalil, Shariful Alam, W. Alharbi, Ali Hassan, Mumtaz Ali, Amira S. Ashour, Asmaa Atef, Assia Bakali, Ayoub Bahnasse, A. A. Azzam, Willem K.M. Brauers, Bui Cong Cuong, Fausto Cavallaro, Ahmet Çevik, Robby I. Chandra, Kalaivani Chandran, Victor Chang, Chang Su Kim, Jyotir Moy Chatterjee, Victor Christianto, Chunxin Bo, Mihaela Colhon, Shyamal Dalapati, Arindam Dey, Dunqian Cao, Fahad Alsharari, Faruk Karaaslan, Aleksandra Fedajev, Daniela Gîfu, Hina Gulzar, Haitham A. El-Ghareeb, Masooma Raza Hashmi, Hewayda El-Ghawalby, Hoang Viet Long, Le Hoang Son, F. Nirmala Irudayam, Branislav Ivanov, S. Jafari, Jeong Gon Lee, Milena Jevtić, Sudan Jha, Junhui Kim, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Songül Karabatak, Abdullah Kargın, M. Karthika, Ieva Meidute-Kavaliauskiene, Madad Khan, Majid Khan, Manju Khari, Kifayat Ullah, K. Kishore, Kul Hur, Santanu Kumar Patro, Prem Kumar Singh, Raghvendra Kumar, Tapan Kumar Roy, Malayalan Lathamaheswari, Luu Quoc Dat, T. Madhumathi, Tahir Mahmood, Mladjan Maksimovic, Gunasekaran Manogaran, Nivetha Martin, M. Kasi Mayan, Mai Mohamed, Mohamed Talea, Muhammad Akram, Muhammad Gulistan, Raja Muhammad Hashim, Muhammad Riaz, Muhammad Saeed, Rana Muhammad Zulqarnain, Nada A. Nabeeh, Deivanayagampillai Nagarajan, Xenia Negrea, Nguyen Xuan Thao, Jagan M. Obbineni, Angelo de Oliveira, M. Parimala, Gabrijela Popovic, Ishaani Priyadarshini, Yaser Saber, Mehmet Șahin, Said Broumi, A. A. Salama, M. Saleh, Ganeshsree Selvachandran, Dönüș Șengür, Shio Gai Quek, Songtao Shao, Dragiša Stanujkić, Surapati Pramanik, Swathi Sundari Sundaramoorthy, Mirela Teodorescu, Selçuk Topal, Muhammed Turhan, Alptekin Ulutaș, Luige Vlădăreanu, Victor Vlădăreanu, Ştefan Vlăduţescu, Dan Valeriu Voinea, Volkan Duran, Navneet Yadav, Yanhui Guo, Naveed Yaqoob, Yongquan Zhou, Young Bae Jun, Xiaohong Zhang, Xiao Long Xin, Edmundas Kazimieras Zavadskas.
The existing moving average control charts can be only applied when all observations in the data are determined, precise, and certain. But, in practice, the data from the weather monitoring is not exact and express in the interval. In this situation, the available monitoring plans cannot be applied for the monitoring of weather data. A new moving average control chart for the normal distribution is offered under the neutrosophic statistics. The parameters of the offered chart are determined through simulation under neutrosophic statistics.
This book offers a comprehensive guide to the use of neutrosophic sets in multiple criteria decision making problems. It shows how neutrosophic sets, which have been developed as an extension of fuzzy and paraconsistent logic, can help in dealing with certain types of uncertainty that classical methods could not cope with. The chapters, written by well-known researchers, report on cutting-edge methodologies they have been developing and testing on a variety of engineering problems. The book is unique in its kind as it reports for the first time and in a comprehensive manner on the joint use of neutrosophic sets together with existing decision making methods to solve multi-criteria decision-making problems, as well as other engineering problems that are complex, hard to model and/or include incomplete and vague data. By providing new ideas, suggestions and directions for the solution of complex problems in engineering and decision making, it represents an excellent guide for researchers, lecturers and postgraduate students pursuing research on neutrosophic decision making, and more in general in the area of industrial and management engineering.
The aim of this paper is to propose the generalized version of the multipolar neutrosophic soft set with operations and basic properties. Here, we define the AND, OR, Truth-Favorite, and False-Favorite operators along with their properties. Also, we define the necessity and possibility of operations for them. Later on, to extend it to solve the decision-making problems, we define some information measures such as distance, similarity, and correlation coefficient for the generalized multipolar neutrosophic soft set. Several desirable properties and their relationship between them are derived. Finally, based on these information measures, a decision-making algorithm is stated under the neutrosophic environment to tackle the uncertain and vague information.