GENERALIZED INTEGRAL TRANSFORMS OF DISTRIBUTIONS

GENERALIZED INTEGRAL TRANSFORMS OF DISTRIBUTIONS

Author: Dr. B. B. Waphare

Publisher: Lulu Publication

Published: 2021-02-03

Total Pages: 16

ISBN-13: 1684742080

DOWNLOAD EBOOK

1.1 Introduction In recent years, integral transforms have become essential working tools of every engineer and applied scientist. The Laplace transform, which undoubtedly is the most familiar example, is being suited to solving boundary value problems. The classical methods of solution of initial and boundary value problems in physics and engineering sciences have their roots in Fourier’s pioneering work. An alternative approach through integral transforms methods emerged primarily through Heaviside’s efforts on operational techniques. In addition to being of great theoretical interest to mathematicians, integral transform methods have been found to provide easy and effective ways of solving a variety of problems arising in engineering and physical science. The use of integral transforms is somewhat analogous to that of logarithms. That is, a problem involving multiplication or division can be reduced to one involving simple processes addition or subtraction by taking logarithms. For almost two centuries the method of function transformations has been used successfully in solving many problems in engineering, mathematical physics and applied mathematics. Function transformations include, but are not limited to the well-known technique of linear integral transformations. A function transformation simply means a mathematical operation through which a real or complex valued function f is transformed into an other F, or into a sequence of numbers, or more generally into a set of data. Since its birth in the 1780’s in the work of the great mathematician Laplace, on probability theory, the theory of function transformations has flourished and continues to do so. In the last few years, in particular, it has received a great impetus from the advent of wavelets. Not only is the wavelet transform an example of how practical function transformations can be, but it is also an example of a transformation that has gone beyond what it was designed to do as a technique. It has contributed to the development of modern mathematical analysis just as the Fourier transformation contributed to the advancement of classical analysis in the earliest years of the nineteenth century.


Integral Transforms of Generalized Functions and Their Applications

Integral Transforms of Generalized Functions and Their Applications

Author: Ram Shankar Pathak

Publisher: Routledge

Published: 2017-07-05

Total Pages: 432

ISBN-13: 135156269X

DOWNLOAD EBOOK

For those who have a background in advanced calculus, elementary topology and functional analysis - from applied mathematicians and engineers to physicists - researchers and graduate students alike - this work provides a comprehensive analysis of the many important integral transforms and renders particular attention to all of the technical aspects of the subject. The author presents the last two decades of research and includes important results from other works.


Integral Transforms of Generalized Functions

Integral Transforms of Generalized Functions

Author: Brychkov

Publisher: CRC Press

Published: 1989-04-20

Total Pages: 362

ISBN-13: 9782881247057

DOWNLOAD EBOOK

English translation (from revised and enlarged versions of the Russian editions of 1977 and 1984) of a reference work which makes available to engineers, physicists and applied mathematicians theoretical and tabular material pertaining to certain extensions of standard integral transform techniques. Diverse transforms are touched upon, but the emphasis (particularly in the tables) is on generalized Fourier and Laplace transforms. Some multi-dimensional results are presented. Expensive, but nicely produced, and redundant with nothing standard to the reference shelves of mathematical libraries. (NW) Annotation copyrighted by Book News, Inc., Portland, OR


A Guide to Distribution Theory and Fourier Transforms

A Guide to Distribution Theory and Fourier Transforms

Author: Robert S. Strichartz

Publisher: World Scientific

Published: 2003

Total Pages: 238

ISBN-13: 9789812384300

DOWNLOAD EBOOK

This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.


Integral Transformations, Operational Calculus, and Generalized Functions

Integral Transformations, Operational Calculus, and Generalized Functions

Author: R.G. Buschman

Publisher: Springer

Published: 2013-11-26

Total Pages: 240

ISBN-13: 9781461285489

DOWNLOAD EBOOK

It is not the object of the author to present comprehensive cov erage of any particular integral transformation or of any particular development of generalized functions, for there are books available in which this is done. Rather, this consists more of an introductory survey in which various ideas are explored. The Laplace transforma tion is taken as the model type of an integral transformation and a number of its properties are developed; later, the Fourier transfor mation is introduced. The operational calculus of Mikusinski is pre sented as a method of introducing generalized functions associated with the Laplace transformation. The construction is analogous to the construction of the rational numbers from the integers. Further on, generalized functions associated with the problem of extension of the Fourier transformation are introduced. This construction is anal ogous to the construction of the reals from the rationals by means of Cauchy sequences. A chapter with sections on a variety of trans formations is adjoined. Necessary levels of sophistication start low in the first chapter, but they grow considerably in some sections of later chapters. Background needs are stated at the beginnings of each chapter. Many theorems are given without proofs, which seems appro priate for the goals in mind. A selection of references is included. Without showing many of the details of rigor it is hoped that a strong indication is given that a firm mathematical foundation does actu ally exist for such entities as the "Dirac delta-function".


The Hilbert Transform of Schwartz Distributions and Applications

The Hilbert Transform of Schwartz Distributions and Applications

Author: J. N. Pandey

Publisher: John Wiley & Sons

Published: 2011-10-14

Total Pages: 284

ISBN-13: 1118030753

DOWNLOAD EBOOK

This book provides a modern and up-to-date treatment of the Hilberttransform of distributions and the space of periodic distributions.Taking a simple and effective approach to a complex subject, thisvolume is a first-rate textbook at the graduate level as well as anextremely useful reference for mathematicians, applied scientists,and engineers. The author, a leading authority in the field, shares with thereader many new results from his exhaustive research on the Hilberttransform of Schwartz distributions. He describes in detail how touse the Hilbert transform to solve theoretical and physicalproblems in a wide range of disciplines; these include aerofoilproblems, dispersion relations, high-energy physics, potentialtheory problems, and others. Innovative at every step, J. N. Pandey provides a new definitionfor the Hilbert transform of periodic functions, which isespecially useful for those working in the area of signalprocessing for computational purposes. This definition could alsoform the basis for a unified theory of the Hilbert transform ofperiodic, as well as nonperiodic, functions. The Hilbert transform and the approximate Hilbert transform ofperiodic functions are worked out in detail for the first time inbook form and can be used to solve Laplace's equation with periodicboundary conditions. Among the many theoretical results proved inthis book is a Paley-Wiener type theorem giving thecharacterization of functions and generalized functions whoseFourier transforms are supported in certain orthants of Rn. Placing a strong emphasis on easy application of theory andtechniques, the book generalizes the Hilbert problem in higherdimensions and solves it in function spaces as well as ingeneralized function spaces. It simplifies the one-dimensionaltransform of distributions; provides solutions to thedistributional Hilbert problems and singular integral equations;and covers the intrinsic definition of the testing function spacesand its topology. The book includes exercises and review material for all majortopics, and incorporates classical and distributional problems intothe main text. Thorough and accessible, it explores new ways to usethis important integral transform, and reinforces its value in bothmathematical research and applied science. The Hilbert transform made accessible with many new formulas anddefinitions Written by today's foremost expert on the Hilbert transform ofgeneralized functions, this combined text and reference covers theHilbert transform of distributions and the space of periodicdistributions. The author provides a consistently accessibletreatment of this advanced-level subject and teaches techniquesthat can be easily applied to theoretical and physical problemsencountered by mathematicians, applied scientists, and graduatestudents in mathematics and engineering. Introducing many new inversion formulas that have been developedand applied by the author and his research associates, the book: * Provides solutions to the distributional Hilbert problem andsingular integral equations * Focuses on the Hilbert transform of Schwartz distributions,giving intrinsic definitions of the space H(D) and its topology * Covers the Paley-Wiener theorem and provides many importanttheoretical results of importance to research mathematicians * Provides the characterization of functions and generalizedfunctions whose Fourier transforms are supported in certainorthants of Rn * Offers a new definition of the Hilbert transform of the periodicfunction that can be used for computational purposes in signalprocessing * Develops the theory of the Hilbert transform of periodicdistributions and the approximate Hilbert transform of periodicdistributions * Provides exercises at the end of each chapter--useful toprofessors in planning assignments, tests, and problems


Integral Transforms of Generalized Functions and Their Applications

Integral Transforms of Generalized Functions and Their Applications

Author: Ram Shankar Pathak

Publisher: Routledge

Published: 2017-07-05

Total Pages: 436

ISBN-13: 1351562681

DOWNLOAD EBOOK

For those who have a background in advanced calculus, elementary topology and functional analysis - from applied mathematicians and engineers to physicists - researchers and graduate students alike - this work provides a comprehensive analysis of the many important integral transforms and renders particular attention to all of the technical aspects of the subject. The author presents the last two decades of research and includes important results from other works.


Handbook of Function and Generalized Function Transformations

Handbook of Function and Generalized Function Transformations

Author: Ahmed I. Zayed

Publisher: CRC Press

Published: 1996-05-15

Total Pages: 684

ISBN-13: 9780849378515

DOWNLOAD EBOOK

Function transformations, which include linear integral transformations, are some of the most important mathematical tools for solving problems in all areas of engineering and the physical sciences. They allow one to quickly solve a problem by breaking it down into a series of smaller, more manageable problems. The author has compiled the most important and widely used of these function transforms in applied mathematics and electrical engineering. In addition to classical transforms, newer transforms such as wavelets, Zak, and Radon are included. The book is neither a table of transforms nor a textbook, but it is a source book that provides quick and easy access to the most important properties and formulas of function and generalized function transformations. It is organized for convenient reference, with chapters broken down into the following sections:


Generalized Integral Transforms In Mathematical Finance

Generalized Integral Transforms In Mathematical Finance

Author: Andrey Itkin

Publisher: World Scientific

Published: 2021-10-12

Total Pages: 508

ISBN-13: 9811231753

DOWNLOAD EBOOK

This book describes several techniques, first invented in physics for solving problems of heat and mass transfer, and applies them to various problems of mathematical finance defined in domains with moving boundaries. These problems include: (a) semi-closed form pricing of options in the one-factor models with time-dependent barriers (Bachelier, Hull-White, CIR, CEV); (b) analyzing an interconnected banking system in the structural credit risk model with default contagion; (c) finding first hitting time density for a reducible diffusion process; (d) describing the exercise boundary of American options; (e) calculating default boundary for the structured default problem; (f) deriving a semi-closed form solution for optimal mean-reverting trading strategies; to mention but some.The main methods used in this book are generalized integral transforms and heat potentials. To find a semi-closed form solution, we need to solve a linear or nonlinear Volterra equation of the second kind and then represent the option price as a one-dimensional integral. Our analysis shows that these methods are computationally more efficient than the corresponding finite-difference methods for the backward or forward Kolmogorov PDEs (partial differential equations) while providing better accuracy and stability.We extend a large number of known results by either providing solutions on complementary or extended domains where the solution is not known yet or modifying these techniques and applying them to new types of equations, such as the Bessel process. The book contains several novel results broadly applicable in physics, mathematics, and engineering.


The Radon Transform

The Radon Transform

Author: Sigurdur Helgason

Publisher: Springer Science & Business Media

Published: 1999-08-01

Total Pages: 214

ISBN-13: 9780817641092

DOWNLOAD EBOOK

The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.