In this disquisition we have scrutinize about the traits of generalized topological spaces using neutrosophic sets. Depending on the nature of neutrosophic sets over the generalized topological spaces, some of the features has been contemplated.
As a generalization of fuzzy sets and intuitionistic fuzzy sets, Neutrosophic sets have been developed by Smarandache to represent imprecise, incomplete and inconsistent information existing in the real world. A neutrosophic set is characterized by a truth value, an indeterminacy value and a falsity value. In this paper, we introduce and study a new class of Neutrosophic generalized closed set, namely Neutrosophic generalized pre regular closed sets and Neutrosophic generalized pre regular open sets in Neutrosophic topological spaces.
In this paper, the concept of generalized neutrosophic pre-closed sets and generalized neutrosophic pre-open sets are introduced. We also study relations and various properties between the other existing neutrosophic open and closed sets.
In this paper, we will define a new class of sets, called fuzzy neutrosophic weakly- generalized closed sets, then we proved some theorems related to this definition. After that, we studied some relations between fuzzy neutrosophic weakly-generalized closed sets and fuzzy neutrosophic α closed sets, fuzzy neutrosophic closed sets, fuzzy neutrosophic regular closed sets, fuzzy neutrosophic pre closed sets and fuzzy neutrosophic semi closed sets.
Papers on neutrosophic statistics, neutrosophic probability, plithogenic set, paradoxism, neutrosophic set, NeutroAlgebra, etc. and their applications.
In this paper, the concept of neutrosophic topological spaces is introduced. We define and study the properties of neutrosophic open sets, closed sets, interior and closure. The set of all generalize neutrosophic pre-closed sets GNPC and the set of all neutrosophic open sets in a neutrosophic topological space can be considered as examples of generalized neutrosophic topological spaces.
In this paper we desire to extend the neutrosophic topological spaces into N-neutrosophic topological spaces. Also we show that this theory can be deduced to N-intuitionistic and N-fuzzy topological spaces etc.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Parameter Reduction of Neutrosophic Soft Sets and Their Applications, Geometric Programming (NGP) Problems Subject to (⋁,.) Operator; the Minimum Solution, Ngpr Homeomorphism in Neutrosophic Topological Spaces, Generalized Neutrosophic Separation Axioms in Neutrosophic Soft Topological Spaces.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Neutrosophic Soft Fixed Points, Selection of Alternative under the Framework of Single-Valued Neutrosophic Sets, Application of Single Valued Trapezoidal Neutrosophic Numbers in Transportation Problem.