General Purpose Polystyrene Production - Cost Analysis - PS E11A

General Purpose Polystyrene Production - Cost Analysis - PS E11A

Author: Intratec

Publisher: Intratec

Published: 2019-09-17

Total Pages: 101

ISBN-13:

DOWNLOAD EBOOK

This report presents a cost analysis of General Purpose Polystyrene (GPPS) production from styrene. The process examined is a typical continuous bulk polymerization process. This report was developed based essentially on the following reference(s): (1) "Polystyrene and Styrene Copolymers", Ullmann's Encyclopedia of Industrial Chemistry, 7th edition (2) "Styrene Plastics", Kirk-Othmer Encyclopedia of Chemical Technology, 4th edition Keywords: INEOS, Versalis, Polystyrene, GPPS


Finite Element Modelling of Composite Materials and Structures

Finite Element Modelling of Composite Materials and Structures

Author: F L Matthews

Publisher: Elsevier

Published: 2000-10-27

Total Pages: 225

ISBN-13: 1855738929

DOWNLOAD EBOOK

Finite element modelling of composite materials and structures provides an introduction to a technique which is increasingly being used as an analytical tool for composite materials.The text is presented in four parts: - Part one sets the scene and reviews the fundamentals of composite materials together with the basic nature of FRP and its constituents. Two-dimensional stress-strain is covered, as is laminated plated theory and its limitations. - Part two reviews the basic principles of FE analysis, starting with underlying theoretical issues and going on to show how elements are derived, a model is generated and results are processed. - Part three builds on the basics of FE analysis and considers the particular issues that arise in applying finite elements to composites, especially to the layered nature of the material. - Part four deals with the application of FE to FRP composites, presenting analytical models alongside FE representations. Specific issues addressed include interlaminar stresses, fracture delamination, joints and fatigue.This book is invaluable for students of materials science and engineering, and for engineers and others wishing to expand their knowledge of structural analysis. - Covers important work on finite element analysis of composite material performance - Based on material developed for an MSc course at Imperial College, London, UK - Covers particular problems such as holes, free edges with FE results compared with experimental data and classical analysis


Composite Materials

Composite Materials

Author: Kamal K. Kar

Publisher: Springer

Published: 2016-10-14

Total Pages: 694

ISBN-13: 3662495147

DOWNLOAD EBOOK

Composite materials are used as substitutions of metals/traditional materials in aerospace, automotive, civil, mechanical and other industries. The present book collects the current knowledge and recent developments in the characterization and application of composite materials. To this purpose the volume describes the outstanding properties of this class of advanced material which recommend it for various industrial applications.


Engineering Materials 1

Engineering Materials 1

Author: M. F. Ashby

Publisher:

Published: 1996

Total Pages: 324

ISBN-13:

DOWNLOAD EBOOK

This book gives a broad introduction to the properties of materials used in engineering applications, and is intended to provide a course in engineering materials for students with no previous background in the subject.


NUREG/CR.

NUREG/CR.

Author: U.S. Nuclear Regulatory Commission

Publisher:

Published: 1977

Total Pages: 164

ISBN-13:

DOWNLOAD EBOOK


Materials

Materials

Author: Michael F. Ashby

Publisher: Butterworth-Heinemann

Published: 2013-10-09

Total Pages: 899

ISBN-13: 0080994350

DOWNLOAD EBOOK

Materials, Third Edition, is the essential materials engineering text and resource for students developing skills and understanding of materials properties and selection for engineering applications. This new edition retains its design-led focus and strong emphasis on visual communication while expanding its inclusion of the underlying science of materials to fully meet the needs of instructors teaching an introductory course in materials. A design-led approach motivates and engages students in the study of materials science and engineering through real-life case studies and illustrative applications. Highly visual full color graphics facilitate understanding of materials concepts and properties. For instructors, a solutions manual, lecture slides, online image bank, and materials selection charts for use in class handouts or lecture presentations are available at http://textbooks.elsevier.com. The number of worked examples has been increased by 50% while the number of standard end-of-chapter exercises in the text has been doubled. Coverage of materials and the environment has been updated with a new section on Sustainability and Sustainable Technology. The text meets the curriculum needs of a wide variety of courses in the materials and design field, including introduction to materials science and engineering, engineering materials, materials selection and processing, and materials in design. - Design-led approach motivates and engages students in the study of materials science and engineering through real-life case studies and illustrative applications - Highly visual full color graphics facilitate understanding of materials concepts and properties - Chapters on materials selection and design are integrated with chapters on materials fundamentals, enabling students to see how specific fundamentals can be important to the design process - For instructors, a solutions manual, lecture slides, online image bank and materials selection charts for use in class handouts or lecture presentations are available at http://textbooks.elsevier.com - Links with the Cambridge Engineering Selector (CES EduPack), the powerful materials selection software. See www.grantadesign.com for information NEW TO THIS EDITION: - Text and figures have been revised and updated throughout - The number of worked examples has been increased by 50% - The number of standard end-of-chapter exercises in the text has been doubled - Coverage of materials and the environment has been updated with a new section on Sustainability and Sustainable Technology


Composites and Their Properties

Composites and Their Properties

Author: Ning Hu

Publisher: BoD – Books on Demand

Published: 2012-08-22

Total Pages: 520

ISBN-13: 9535107119

DOWNLOAD EBOOK

Composites are a class of material, which receives much attention not only because it is on the cutting edge of active material research fields due to appearance of many new types of composites, e.g., nanocomposites and bio-medical composites, but also because there are a great deal of promises for their potential applications in various industries ranging from aerospace to construction due to their various outstanding properties. This book mainly deals with fabrication and property characterization of various composites by focusing on the following topics: functional and structural nanocomposites, numerical and theoretical modelling of various damages in long fiber reinforced composites and textile composites, design, processing and manufacturing technologies and their effects on mechanical properties of composites, characterization of mechanical and physical properties of various composites, and metal and ceramic matrix composites. This book has been divided into five sections to cover the above contents.


Clay-Polymer Nanocomposites

Clay-Polymer Nanocomposites

Author: Khouloud Jlassi

Publisher: Elsevier

Published: 2017-07-26

Total Pages: 548

ISBN-13: 0323461611

DOWNLOAD EBOOK

Clay–Polymer Nanocomposites is a complete summary of the existing knowledge on this topic, from the basic concepts of synthesis and design to their applications in timely topics such as high-performance composites, environment, and energy issues. This book covers many aspects of synthesis such as in- situ polymerization within the interlamellar spacing of the clays or by reaction of pristine or pre-modified clays with reactive polymers and prepolymers. Indeed, nanocomposites can be prepared at industrial scale by melt mixing. Regardless the synthesis method, much is said in this book about the importance of theclay pre-modification step, which is demonstrated to be effective, on many occasions, in obtaining exfoliated nanocomposites. Clay–Polymer Nanocomposites reports the background to numerous characterization methods including solid state NMR, neutron scattering, diffraction and vibrational techniques as well as surface analytical methods, namely XPS, inverse gas chromatography and nitrogen adsorption to probe surface composition, wetting and textural/structural properties. Although not described in dedicated chapters, numerous X-ray diffraction patterns of clay–polymer nanocomposites and reference materials are displayed to account for the effects of intercalation and exfoliations of layered aluminosilicates. Finally, multiscale molecular simulation protocols are presenting for predicting morphologies and properties of nanostructured polymer systems with industrial relevance. As far as applications are concerned, Clay–Polymer Nanocomposites examines structural composites such as clay–epoxy and clay–biopolymers, the use of clay–polymer nanocomposites as reactive nanocomposite fillers, catalytic clay-(conductive) polymers and similar nanocomposites for the uptake of hazardous compounds or for controlled drug release, antibacterial applications, energy storage, and more. - The most comprehensive coverage of the state of the art in clay–polymer nanocomposites, from synthesis and design to opportunities and applications - Covers the various methods of characterization of clay–polymer nanocomposites - including spectroscopy, thermal analyses, and X-ray diffraction - Includes a discussion of a range of application areas, including biomedicine, energy storage, biofouling resistance, and more


Principles of Polymer Design and Synthesis

Principles of Polymer Design and Synthesis

Author: Wei-Fang Su

Publisher: Springer Science & Business Media

Published: 2013-10-09

Total Pages: 314

ISBN-13: 3642387306

DOWNLOAD EBOOK

How can a scientist or engineer synthesize and utilize polymers to solve our daily problems? This introductory text, aimed at the advanced undergraduate or graduate student, provides future scientists and engineers with the fundamental knowledge of polymer design and synthesis to achieve specific properties required in everyday applications. In the first five chapters, this book discusses the properties and characterization of polymers, since designing a polymer initially requires us to understand the effects of chemical structure on physical and chemical characteristics. Six further chapters discuss the principles of polymerization reactions including step, radical chain, ionic chain, chain copolymerization, coordination and ring opening. Finally, material is also included on how commonly known polymers are synthesized in a laboratory and a factory. This book is suitable for a one semester course in polymer chemistry and does not demand prior knowledge of polymer science.