Forest trees cover 30% of the earth's land surface, providing renewable fuel, wood, timber, shelter, fruits, leaves, bark, roots, and are source of medicinal products in addition to benefits such as carbon sequestration, water shed protection, and habitat for 1/3 of terrestrial species. However, the genetic analysis and breeding of trees has lagged behind that of crop plants. Therefore, systematic conservation, sustainable improvement and pragmatic utilization of trees are global priorities. This book provides comprehensive and up to date information about tree characterization, biological understanding, and improvement through biotechnological and molecular tools.
This Research Topic addresses research in genomics and biotechnology to improve the growth and quality of forest trees for wood, pulp, biorefineries and carbon capture. Forests are the world’s greatest repository of terrestrial biomass and biodiversity. Forests serve critical ecological services, supporting the preservation of fauna and flora, and water resources. Planted forests also offer a renewable source of timber, for pulp and paper production, and the biorefinery. Despite their fundamental role for society, thousands of hectares of forests are lost annually due to deforestation, pests, pathogens and urban development. As a consequence, there is an increasing need to develop trees that are more productive under lower inputs, while understanding how they adapt to the environment and respond to biotic and abiotic stress. Forest genomics and biotechnology, disciplines that study the genetic composition of trees and the methods required to modify them, began over a quarter of a century ago with the development of the first genetic maps and establishment of early methods of genetic transformation. Since then, genomics and biotechnology have impacted all research areas of forestry. Genome analyses of tree populations have uncovered genes involved in adaptation and response to biotic and abiotic stress. Genes that regulate growth and development have been identified, and in many cases their mechanisms of action have been described. Genetic transformation is now widely used to understand the roles of genes and to develop germplasm that is more suitable for commercial tree plantations. However, in contrast to many annual crops that have benefited from centuries of domestication and extensive genomic and biotechnology research, in forestry the field is still in its infancy. Thus, tremendous opportunities remain unexplored. This Research Topic aims to briefly summarize recent findings, to discuss long-term goals and to think ahead about future developments and how this can be applied to improve growth and quality of forest trees.
This book, which contains 20 chapters, integrates the varied subdisciplines of genetics and their applications in gene conservation, tree improvement and biotechnology. Topics covered include: genetic variation in natural forests, the application of genetics in tree improvement and breeding programmes, and genomic sequences and molecular technologies. This book will be a valuable resource for students, scientists and professionals in the plant sciences, especially forest geneticists, tree breeders, forest managers and other natural resource specialists.
Eucalypts are used for the production of paper products, firewood, charcoal, potential feedstocks for bioenergy and biomaterials, as ornamentals and landscape trees, and in land rehabilitation. Eucalypt breeding is at an early stage with many plantings being only at the first stages of domestication. The relatively small genomes of these species make the application of molecular genetics approaches attractive. The application of modern genomics will accelerate the development of improved eucalypts for a wide range of uses. This book brings together diverse information on the genetics, genomics, and breeding of these important forest species.
Successful release of new and better crop varieties increasingly requires genomics and molecular biology. This volume presents basic information on plant molecular marker techniques from marker location up to gene cloning. The text includes a description of technical approaches in genome analysis such as comparison of marker systems, positional cloning, and array techniques in 19 crop plants. A special section focuses on converting this knowledge into general and specific breeding strategies, particularly in relation to biotic stress. Theory and practice of marker assisted selection for QTL, gene pyramiding and the future of MAS are summarized and discussed for maize, wheat, and soybean. Furthermore, approaches in silviculture on the examples of Fagus, Populus, Eucalyptus, Picea and Abies are presented. The volume ends with a comprehensive review of the patents relevant for using molecular markers and marker assisted selection.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. This latest volume includes reviews on plant physiology, biochemistry, genetics and genomics, forests, and ecosystems.
This publication presents the latest research in perennial crop breeding and programmes, and provides direction on where the field of perennial crop is heading. Many production systems and agricultural practices are no longer sustainable today as their effects on soils, water, biodiversity, and livelihood are significant. Mainstreaming the use of perennial crops into current practices can contribute to stabilize fragile soils and maintain natural processes essential to obtain stable and high yields. To face the challenges and risks of the twenty-first century, increasing the perenniality of crops and agricultural systems should become a larger research, development and policy focus.
Intended for undergraduate and graduate students in conservation biology, natural resource management, and ecology, this book compiles compelling case histories in molecular ecology.