Gated Bayesian Networks

Gated Bayesian Networks

Author: Marcus Bendtsen

Publisher: Linköping University Electronic Press

Published: 2017-06-08

Total Pages: 245

ISBN-13: 9176855252

DOWNLOAD EBOOK

Bayesian networks have grown to become a dominant type of model within the domain of probabilistic graphical models. Not only do they empower users with a graphical means for describing the relationships among random variables, but they also allow for (potentially) fewer parameters to estimate, and enable more efficient inference. The random variables and the relationships among them decide the structure of the directed acyclic graph that represents the Bayesian network. It is the stasis over time of these two components that we question in this thesis. By introducing a new type of probabilistic graphical model, which we call gated Bayesian networks, we allow for the variables that we include in our model, and the relationships among them, to change overtime. We introduce algorithms that can learn gated Bayesian networks that use different variables at different times, required due to the process which we are modelling going through distinct phases. We evaluate the efficacy of these algorithms within the domain of algorithmic trading, showing how the learnt gated Bayesian networks can improve upon a passive approach to trading. We also introduce algorithms that detect changes in the relationships among the random variables, allowing us to create a model that consists of several Bayesian networks, thereby revealing changes and the structure by which these changes occur. The resulting models can be used to detect the currently most appropriate Bayesian network, and we show their use in real-world examples from both the domain of sports analytics and finance.


Bayesian Networks

Bayesian Networks

Author: Olivier Pourret

Publisher: John Wiley & Sons

Published: 2008-04-30

Total Pages: 446

ISBN-13: 9780470994542

DOWNLOAD EBOOK

Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.


Learning Bayesian Networks

Learning Bayesian Networks

Author: Richard E. Neapolitan

Publisher: Prentice Hall

Published: 2004

Total Pages: 704

ISBN-13:

DOWNLOAD EBOOK

In this first edition book, methods are discussed for doing inference in Bayesian networks and inference diagrams. Hundreds of examples and problems allow readers to grasp the information. Some of the topics discussed include Pearl's message passing algorithm, Parameter Learning: 2 Alternatives, Parameter Learning r Alternatives, Bayesian Structure Learning, and Constraint-Based Learning. For expert systems developers and decision theorists.


Uncertainty in Artificial Intelligence

Uncertainty in Artificial Intelligence

Author: Laveen N. Kanal

Publisher: North Holland

Published: 1986

Total Pages: 509

ISBN-13: 9780444700582

DOWNLOAD EBOOK

Hardbound. How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.


Bayesian Networks in R

Bayesian Networks in R

Author: Radhakrishnan Nagarajan

Publisher: Springer Science & Business Media

Published: 2014-07-08

Total Pages: 168

ISBN-13: 1461464463

DOWNLOAD EBOOK

Bayesian Networks in R with Applications in Systems Biology is unique as it introduces the reader to the essential concepts in Bayesian network modeling and inference in conjunction with examples in the open-source statistical environment R. The level of sophistication is also gradually increased across the chapters with exercises and solutions for enhanced understanding for hands-on experimentation of the theory and concepts. The application focuses on systems biology with emphasis on modeling pathways and signaling mechanisms from high-throughput molecular data. Bayesian networks have proven to be especially useful abstractions in this regard. Their usefulness is especially exemplified by their ability to discover new associations in addition to validating known ones across the molecules of interest. It is also expected that the prevalence of publicly available high-throughput biological data sets may encourage the audience to explore investigating novel paradigms using the approaches presented in the book.


Innovations in Bayesian Networks

Innovations in Bayesian Networks

Author: Dawn E. Holmes

Publisher: Springer

Published: 2008-09-10

Total Pages: 324

ISBN-13: 354085066X

DOWNLOAD EBOOK

Bayesian networks currently provide one of the most rapidly growing areas of research in computer science and statistics. In compiling this volume we have brought together contributions from some of the most prestigious researchers in this field. Each of the twelve chapters is self-contained. Both theoreticians and application scientists/engineers in the broad area of artificial intelligence will find this volume valuable. It also provides a useful sourcebook for Graduate students since it shows the direction of current research.


Probabilistic Graphical Models

Probabilistic Graphical Models

Author: Linda C. van der Gaag

Publisher: Springer

Published: 2014-09-11

Total Pages: 609

ISBN-13: 3319114336

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 7th International Workshop on Probabilistic Graphical Models, PGM 2014, held in Utrecht, The Netherlands, in September 2014. The 38 revised full papers presented in this book were carefully reviewed and selected from 44 submissions. The papers cover all aspects of graphical models for probabilistic reasoning, decision making, and learning.


Handbook of Diagnostic Classification Models

Handbook of Diagnostic Classification Models

Author: Matthias von Davier

Publisher: Springer Nature

Published: 2019-10-11

Total Pages: 646

ISBN-13: 3030055841

DOWNLOAD EBOOK

This handbook provides an overview of major developments around diagnostic classification models (DCMs) with regard to modeling, estimation, model checking, scoring, and applications. It brings together not only the current state of the art, but also the theoretical background and models developed for diagnostic classification. The handbook also offers applications and special topics and practical guidelines how to plan and conduct research studies with the help of DCMs. Commonly used models in educational measurement and psychometrics typically assume a single latent trait or at best a small number of latent variables that are aimed at describing individual differences in observed behavior. While this allows simple rankings of test takers along one or a few dimensions, it does not provide a detailed picture of strengths and weaknesses when assessing complex cognitive skills. DCMs, on the other hand, allow the evaluation of test taker performance relative to a potentially large number of skill domains. Most diagnostic models provide a binary mastery/non-mastery classification for each of the assumed test taker attributes representing these skill domains. Attribute profiles can be used for formative decisions as well as for summative purposes, for example in a multiple cut-off procedure that requires mastery on at least a certain subset of skills. The number of DCMs discussed in the literature and applied to a variety of assessment data has been increasing over the past decades, and their appeal to researchers and practitioners alike continues to grow. These models have been used in English language assessment, international large scale assessments, and for feedback for practice exams in preparation of college admission testing, just to name a few. Nowadays, technology-based assessments provide increasingly rich data on a multitude of skills and allow collection of data with respect to multiple types of behaviors. Diagnostic models can be understood as an ideal match for these types of data collections to provide more in-depth information about test taker skills and behavioral tendencies.


Bayesian Networks and Decision Graphs

Bayesian Networks and Decision Graphs

Author: Thomas Dyhre Nielsen

Publisher: Springer Science & Business Media

Published: 2009-03-17

Total Pages: 457

ISBN-13: 0387682821

DOWNLOAD EBOOK

This is a brand new edition of an essential work on Bayesian networks and decision graphs. It is an introduction to probabilistic graphical models including Bayesian networks and influence diagrams. The reader is guided through the two types of frameworks with examples and exercises, which also give instruction on how to build these models. Structured in two parts, the first section focuses on probabilistic graphical models, while the second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision process and partially ordered decision problems.