Introduction to Simulation Methods for Gas Discharge Plasmas

Introduction to Simulation Methods for Gas Discharge Plasmas

Author: Ismail Rafatov

Publisher: Myprint

Published: 2020-12-13

Total Pages: 124

ISBN-13: 9780750323611

DOWNLOAD EBOOK

Gas discharge plasma is the most common type of low-temperature plasma, with a large number of practical applications covering almost all areas of modern science and technology. This book is an introduction to the numerical modeling methods for gas discharge plasmas. It is intended to assist and direct graduate students and junior researchers, whose research activity deals with computational plasma physics. Topics covered include the essentials of basic modelling approaches (particle, fluid, and hybrid) for gas discharges, and the implementation of these methods with examples of glow (DC and RF) discharges. Numerical studies of nonlinear dynamics and formation of spatio-temporal patterns in gas discharge systems are also presented. Key Features Focuses solely on gas discharge plasmas Covers basic modelling techniques, including particle, fluid, and hybrid Provides details of applications and implementation for the considered methods Special emphasis is given to the applicability and reliability of different modelling techniques Provides specific examples of numerical simulations of the gas discharge plasmas


Gaseous Dielectrics X

Gaseous Dielectrics X

Author: Loucas C. Christophorou

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 507

ISBN-13: 144198979X

DOWNLOAD EBOOK

The book contains a broad and in depth review by leading world experts of the progress and the problems of current interest in gaseous dielectrics and their use, especially as insulators in high-voltage equipment and substations. Recent advances in superconductivity for power transmission and in plasma technology are also included. The fundamental, applied and industrial research described in the book allows the electric power industry to transmit and distribute electrical energy in more efficient, safe and environmentally acceptable ways.


High-Energy Ecologically Safe HF/DF Lasers

High-Energy Ecologically Safe HF/DF Lasers

Author: Victor V. Apollonov

Publisher: CRC Press

Published: 2020-02-13

Total Pages: 226

ISBN-13: 1000066177

DOWNLOAD EBOOK

This book explores new principles of Self-Initiating Volume Discharge for creating high-energy non-chain HF(DF) lasers, as well as the creation of highly efficient lasers with output energy and radiation power in the spectral region of 2.6–5 μm. Today, sources of high-power lasing in this spectral region are in demand in various fields of science and technology including remote sensing of the atmosphere, medicine, biological imaging, precision machining and other special applications. These applications require efficient laser sources with high pulse energy, pulsed and average power, which makes the development of physical fundamentals of high-power laser creation and laser complexes of crucial importance. High-Energy Ecologically Safe HF/DF Lasers: Physics of Self-Initiated Volume Discharge-Based HF/DF Lasers examines the conditions of formation of SSVD, gas composition and the mode of energy input into the gas on the efficiency and radiation energy of non-chain HF(DF) lasers. Key Features: Shares research results on SSVD in mixtures of non-chain HF(DF) lasers Studies the stability and dynamics of the development of SSVD Discusses the effect of the gas composition and geometry of the discharge gap (DG) on its characteristics Proposes recommendations for gas composition and for the method of obtaining SSVD in non-chain HF(DF) lasers Develops simple and reliable wide-aperture non-chain HF(DF) lasers and investigates their characteristics Investigates the possibilities of expanding the lasing spectrum of non-chain HF(DF) lasers