High-Temperature H2S Removal from IGCC Coarse Gas

High-Temperature H2S Removal from IGCC Coarse Gas

Author: Jiang Wu

Publisher: Springer

Published: 2017-11-07

Total Pages: 162

ISBN-13: 9811068178

DOWNLOAD EBOOK

This book provides extensive information on high-temperature H2S removal for integrated gasification combined cycle (IGCC) coarse gas, together with briefly introductions to the concept of clean coal technology, and to the mechanism and kinetics of hot coal gas desulfurizers. Readers will gain a comprehensive understanding of available control methods for high-temperature H2S removal in IGCC coarse gas and how the technology has been adopted by industry. As such, the book offers a unique resource for researchers and engineers in the fields of energy science and technology, environmental science and technology, and chemical engineering.


Power Generation from Solid Fuels

Power Generation from Solid Fuels

Author: Hartmut Spliethoff

Publisher: Springer Science & Business Media

Published: 2010-03-18

Total Pages: 704

ISBN-13: 364202856X

DOWNLOAD EBOOK

Power Generation from Solid Fuels introduces the different technologies to produce heat and power from solid fossil (hard coal, brown coal) and renewable (biomass, waste) fuels, such as combustion and gasification, steam power plants and combined cycles etc. The book discusses technologies with regard to their efficiency, emissions, operational behavior, residues and costs. Besides proven state of the art processes, the focus is on the potential of new technologies currently under development or demonstration. The main motivation of the book is to explain the technical possibilities for reducing CO2 emissions from solid fuels. The strategies which are treated are: more efficient power and heat generation technologies, processes for the utilisation of renewable solid fuels, such as biomass and waste, and technologies for carbon capture and storage. Power Generation from Solid Fuels provides, both to academia and industry, a concise treatment of industrial combustion of all types of solid, hopefully inspiring the next generation of engineers and scientists.


Combustion Technology for a Clean Environment

Combustion Technology for a Clean Environment

Author: Maria Carvalho

Publisher: CRC Press

Published: 2002-11-08

Total Pages: 1576

ISBN-13: 9781560329770

DOWNLOAD EBOOK

The more than 90 refereed papers in this volume continue a series of biannual benchmarks for technologies that maximize energy conversion while minimizing undesirable emissions. Covering the entire range of industrial and transport combustion as well as strategies for energy research and development, these state-of-the-art will be indispensable to mechanical and chemical engineers in academia and industry and technical personnel in military, energy and environmental government agencies. The topics covered in this book include wood, oil, gas and coal combustion, combustion of alternative fuels, co-combustion and co-gasification, catalytic combustion, NO, SO, soot fundamentals, advanced diagnostics, burners, fluidized bed combustion, incineration, engines, advanced cycles, gas clean-up, control strategy and clean combustion in process industries.


Development of High-temperature Turbine Subsystem Technology to a "technology Readiness Status", Phase I

Development of High-temperature Turbine Subsystem Technology to a

Author: A. Caruvana

Publisher:

Published: 1978

Total Pages: 578

ISBN-13:

DOWNLOAD EBOOK

The primary objective of the Phase I ERDA High-Temperature Turbine Technology (HTTT) Program was to provide a ''Program and System Definition'' of the three-phase program which would culminate in the testing of a Technology Readiness Vehicle (TRV) at the end of a six-year period. The TRV is designed for use in a combined cycle using coal-derived fuels at a firing temperature of 2600°F; growth capability to 3000°F is projected. The Phase I results reported are based on a 2600°F gas turbine burning coal-derived fuels. The following major areas are covered: overall plant design descriptions; systems design descriptions; turbine subsystem design; combustor design; phase II proposed program; and phase III proposed program. Details regarding final results of each of these areas are presented. It is concluded that the water-cooled gas turbine in combined cycle has been shown to be capable of extremely attractive levels of performance, both in terms of efficiency and specific output. Coupled with the ability to tolerate a wide range of coal-derived fuels with minimum fuel treatment, an extremely attractive system is presented for the generation of electric power. Future technology development of the high-firing-temperature water-cooled gas turbine is expected to result in the commercial introduction of this concept in combined cycles by the late 1980's or early 1990's.


Gas Cleaning in Demanding Applications

Gas Cleaning in Demanding Applications

Author: J.P. Seville

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 321

ISBN-13: 9400914512

DOWNLOAD EBOOK

In recent years, interest in the technology of gas cleaning has grown, driven partly by environmental legislation, but also by demands for increases in process efficiency and intensity - notable for power generation and waste incineration. This book, which leads on from our successful Gas Cleaning at High Temperatures, describes the present state of the art and its industrial applications.


Biorefinery: From Biomass to Chemicals and Fuels

Biorefinery: From Biomass to Chemicals and Fuels

Author: Michele Aresta

Publisher: Walter de Gruyter

Published: 2012-08-31

Total Pages: 464

ISBN-13: 311026028X

DOWNLOAD EBOOK

This book provides an introduction to the basic science and technologies for the conversion of biomass (terrestrial and aquatic) into chemicals and fuels, as well as an overview of innovations in the field. The entire value chain for converting raw materials into platform molecules and their transformation into final products are presented in detail. Both cellulosic and oleaginous biomass are considered. The book contains contributions by both academic scientists and industrial technologists so that each topic combines state-of-the-art scientific knowledge with innovative technologies relevant to chemical industries. Selected topics include: Refinery of the future: feedstock, processes, products The terrestrial and aquatic biomass production and properties Chemical technologies and biotechnologies for the conversion of cellulose, hemicellulose, lignine, algae, residual biomass Thermal, catalytic and enzymatic conversion of biomass Production of chemicals, polymeric materials, fuels (biogas, biodiesel, bioethanol, biohydrogen) Policy aspects of biomass product chains LCA applied to the energetic, economic and environmental evaluation of the production of fuels from biomass: ethanol, biooil and biodiesel, biogas, biohydrogen


Electrostatic Precipitation

Electrostatic Precipitation

Author: Keping Yan

Publisher: Springer Science & Business Media

Published: 2010-07-19

Total Pages: 739

ISBN-13: 3540892516

DOWNLOAD EBOOK

"Electrostatic Precipitation" includes selected papers presented at the 11th International Conference on Electrostatic Precipitation. It presents the newest developments in electrostatic precipitation, flue gas desulphurization (FGD), selective catalytic reduction (SCR), and non-thermal plasma techniques for multi-pollutants emission control. Almost all outstanding scientists and engineers world-wide in the field will report their on-going researches. The book will be a useful reference for scientists and engineers to keep abreast of the latest developments in environmental science and engineering.


High-Temperature Electrostatic Precipitation: Fundamentals, Phenomena and Feasibility

High-Temperature Electrostatic Precipitation: Fundamentals, Phenomena and Feasibility

Author: Patrick Bürger

Publisher: Cuvillier Verlag

Published: 2023-07-03

Total Pages: 221

ISBN-13: 3736968396

DOWNLOAD EBOOK

Particle separation from hot gases is a challenging task, especially for nanoparticles. Therefore, it is usually avoided by quenching the hot gas to conduct particle separation at a more convenient temperature. In these cases, valuable high-caloric heat is either not utilized at all or only inefficiently because of particle deposition on the heat exchanger surfaces. Valuable potential is thus wasted, as high-temperature processes are already an essential part of many industries and become increasingly relevant for other industrial sectors (e.g., pyrolytic processes in the circular economy). To reduce operating costs and environmental impact, the efficient use of resources (especially fossil fuels) is an absolute necessity. To tackle this pending problem, the concept of high-temperature electrostatic precipitation is investigated in this doctoral thesis. In an electrostatic precipitator, particles are charged by charge carriers produced in a corona discharge near the discharge electrode. Charged particles migrate due to the electric field and subsequently precipitate onto the collection electrode. This doctoral thesis clearly demonstrates the feasibility of nanoparticle removal from hot gases at up to 1073 K (800 °C) using electrostatic precipitation while presenting novel insights into the charge carrier properties and their distribution, the influence of thermionic emission on the operation of electrostatic precipitators, and the fundamentals of particle charging at high temperatures.