This book reviews the current status of research and development in dilute III-V nitrides. It covers major developments in this new class of materials within 24 chapters from prominent research groups. The book integrates materials science and applications in optics and electronics in a unique way. It is valuable both as a reference work for researchers and as a study text for graduate students.
- This book contains full account of the advances made in the dilute nitrides, providing an excellent starting point for workers entering the field. - It gives the reader easier access and better evaluation of future trends, Conveying important results and current ideas. - Includes a generous list of references at the end of each chapter, providing a useful reference to the III-V-N based semiconductors research community. The high speed lasers operating at wavelength of 1.3 μm and 1.55 μm are very important light sources in optical communications since the optical fiber used as a transport media of light has dispersion and attenuation minima, respectively, at these wavelengths. These long wavelengths are exclusively made of InP-based material InGaAsP/InP. However, there are several problems with this material system. Therefore, there has been considerable effort for many years to fabricate long wavelength laser structures on other substrates, especially GaAs. The manufacturing costs of GaAs-based components are lower and the processing techniques are well developed. In 1996 a novel quaternary material GaInAsN was proposed which could avoid several problems with the existing technology of long wavelength lasers. In this book, several leaders in the field of dilute nitrides will cover the growth and processing, experimental characterization, theoretical understanding, and device design and fabrication of this recently developed class of semiconductor alloys. They will review their current status of research and development. Dilute Nitrides (III-N-V) Semiconductors: Physics and Technology organises the most current available data, providing a ready source of information on a wide range of topics, making this book essential reading for all post graduate students, researchers and practitioners in the fields of Semiconductors and Optoelectronics - Contains full account of the advances made in the dilute nitrides, providing an excellent starting point for workers entering the field - Gives the reader easier access and better evaluation of future trends, conveying important results and current ideas - Includes a generous list of references at the end of each chapter, providing a useful reference to the III-V-N based semiconductors research community
III-Nitride semiconductor materials — (Al, In, Ga)N — are excellent wide band gap semiconductors very suitable for modern electronic and optoelectronic applications. Remarkable breakthroughs have been achieved recently, and current knowledge and data published have to be modified and upgraded. This book presents the new developments and achievements in the field.Written by renowned experts, the review chapters in this book cover the most important topics and achievements in recent years, discuss progress made by different groups, and suggest future directions. Each chapter also describes the basis of theory or experiment.The III-Nitride-based industry is building up and new economic developments from these materials are promising. It is expected that III-Nitride-based LEDs may replace traditional light bulbs to realize a revolution in lighting. This book is a valuable source of information for engineers, scientists and students working towards such goals./a
The nonlinear behavior of nitrogen and the passivation effect of hydrogen in dilute nitrides open the way to the manufacture of a new class of nanostructured devices with in-plane variation of the optical band gap. This book addresses the modifications of the electronic structure and of the optical and structural properties induced in these technol
The three volumes of this handbook treat the fundamentals, technology and nanotechnology of nitride semiconductors with an extraordinary clarity and depth. They present all the necessary basics of semiconductor and device physics and engineering together with an extensive reference section. Volume 1 deals with the properties and growth of GaN. The deposition methods considered are: hydride VPE, organometallic CVD, MBE, and liquid/high pressure growth. Additionally, extended defects and their electrical nature, point defects, and doping are reviewed.
• Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. • Gives a broad overview of concepts with concise explanations illustrated by real results. • Compares different levels of modeling, from simple analytical models to complex numerical models. • Discusses practical methods of model validation. • Includes an overview of numerical techniques.
This proceeding is a collection of selected papers presented at Symposium O of Compound Semiconductor Photonics in the International Conference on Materials for Advanced Technology (ICMAT), which was held in Singapore from 28 June to 3 July 2009. The symposium covers a wide range of topics from fundamental semiconductor materials study to photonic device fabrication and application. The papers collected are of recent progress in the active and wide range of semiconductor photonics research. They include materials-related papers on III-As/P, III-nitride, quantum dot/wire/dash growth, ZnO, and chalcogenide, and devices-related papers on photonic crystals, VCSEL, quantum dot/dash lasers, LEDs, waveguides, solar cells and heterogeneous integrat
This volume forms a solid presentation in several important areas of NGS research, including materials, growth and characterization, fundamental physical phenomena, and devices and applications. It examines the novel material of InAs and its related alloys, heterostructures, and nanostructures as well as more traditional NGS materials such as InSb, PbTe, and HgCdTe. Several chapters cover carbon nanotubes and spintronics, along with spin-orbit coupling, nonparabolicity, and large g-factors. The book also deals with the physics and applications of low-energy phenomena at the infrared and terahertz ranges.
Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts
Covers both the fundamentals and the state-of-the-art technology used for MBE Written by expert researchers working on the frontlines of the field, this book covers fundamentals of Molecular Beam Epitaxy (MBE) technology and science, as well as state-of-the-art MBE technology for electronic and optoelectronic device applications. MBE applications to magnetic semiconductor materials are also included for future magnetic and spintronic device applications. Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics is presented in five parts: Fundamentals of MBE; MBE technology for electronic devices application; MBE for optoelectronic devices; Magnetic semiconductors and spintronics devices; and Challenge of MBE to new materials and new researches. The book offers chapters covering the history of MBE; principles of MBE and fundamental mechanism of MBE growth; migration enhanced epitaxy and its application; quantum dot formation and selective area growth by MBE; MBE of III-nitride semiconductors for electronic devices; MBE for Tunnel-FETs; applications of III-V semiconductor quantum dots in optoelectronic devices; MBE of III-V and III-nitride heterostructures for optoelectronic devices with emission wavelengths from THz to ultraviolet; MBE of III-V semiconductors for mid-infrared photodetectors and solar cells; dilute magnetic semiconductor materials and ferromagnet/semiconductor heterostructures and their application to spintronic devices; applications of bismuth-containing III–V semiconductors in devices; MBE growth and device applications of Ga2O3; Heterovalent semiconductor structures and their device applications; and more. Includes chapters on the fundamentals of MBE Covers new challenging researches in MBE and new technologies Edited by two pioneers in the field of MBE with contributions from well-known MBE authors including three Al Cho MBE Award winners Part of the Materials for Electronic and Optoelectronic Applications series Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics will appeal to graduate students, researchers in academia and industry, and others interested in the area of epitaxial growth.