Fuzzy Sets in Decision Analysis, Operations Research and Statistics

Fuzzy Sets in Decision Analysis, Operations Research and Statistics

Author: Roman Slowiński

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 467

ISBN-13: 1461556457

DOWNLOAD EBOOK

Fuzzy Sets in Decision Analysis, Operations Research and Statistics includes chapters on fuzzy preference modeling, multiple criteria analysis, ranking and sorting methods, group decision-making and fuzzy game theory. It also presents optimization techniques such as fuzzy linear and non-linear programming, applications to graph problems and fuzzy combinatorial methods such as fuzzy dynamic programming. In addition, the book also accounts for advances in fuzzy data analysis, fuzzy statistics, and applications to reliability analysis. These topics are covered within four parts: Decision Making, Mathematical Programming, Statistics and Data Analysis, and Reliability, Maintenance and Replacement. The scope and content of the book has resulted from multiple interactions between the editor of the volume, the series editors, the series advisory board, and experts in each chapter area. Each chapter was written by a well-known researcher on the topic and reviewed by other experts in the area. These expert reviewers sometimes became co-authors because of the extent of their contribution to the chapter. As a result, twenty-five authors from twelve countries and four continents were involved in the creation of the 13 chapters, which enhances the international character of the project and gives an idea of how carefully the Handbook has been developed.


Fuzzy Sets, Decision Making, and Expert Systems

Fuzzy Sets, Decision Making, and Expert Systems

Author: Hans-Jürgen Zimmermann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 342

ISBN-13: 9400932499

DOWNLOAD EBOOK

In the two decades since its inception by L. Zadeh, the theory of fuzzy sets has matured into a wide-ranging collection of concepts, models, and tech niques for dealing with complex phenomena which do not lend themselves to analysis by classical methods based on probability theory and bivalent logic. Nevertheless, a question which is frequently raised by the skeptics is: Are there, in fact, any significant problem areas in which the use of the theory of fuzzy sets leads to results which could not be obtained by classical methods? The approximately 5000 publications in this area, which are scattered over many areas such as artificial intelligence, computer science, control engineering, decision making, logic, operations research, pattern recognition, robotics and others, provide an affirmative answer to this question. In spite of the large number of publications, good and comprehensive textbooks which could facilitate the access of newcomers to this area and support teaching were missing until recently. To help to close this gap and to provide a textbook for courses in fuzzy set theory which can also be used as an introduction to this field, the first volume ofthis book was published in 1985 [Zimmermann 1985 b]. This volume tried to cover fuzzy set theory and its applications as extensively as possible. Applications could, therefore, only be described to a limited extent and not very detailed.


Fuzzy Multi-Criteria Decision Making

Fuzzy Multi-Criteria Decision Making

Author: Cengiz Kahraman

Publisher: Springer Science & Business Media

Published: 2008-08-09

Total Pages: 591

ISBN-13: 0387768130

DOWNLOAD EBOOK

This work examines all the fuzzy multicriteria methods recently developed, such as fuzzy AHP, fuzzy TOPSIS, interactive fuzzy multiobjective stochastic linear programming, fuzzy multiobjective dynamic programming, grey fuzzy multiobjective optimization, fuzzy multiobjective geometric programming, and more. Each of the 22 chapters includes practical applications along with new developments/results. This book may be used as a textbook in graduate operations research, industrial engineering, and economics courses. It will also be an excellent resource, providing new suggestions and directions for further research, for computer programmers, mathematicians, and scientists in a variety of disciplines where multicriteria decision making is needed.


Optimal Decision Making in Operations Research and Statistics

Optimal Decision Making in Operations Research and Statistics

Author: Irfan Ali

Publisher: CRC Press

Published: 2021-11-29

Total Pages: 434

ISBN-13: 1000404722

DOWNLOAD EBOOK

The book provides insights in the decision-making for implementing strategies in various spheres of real-world issues. It integrates optimal policies in various decision­making problems and serves as a reference for researchers and industrial practitioners. Furthermore, the book provides sound knowledge of modelling of real-world problems and solution procedure using the various optimisation and statistical techniques for making optimal decisions. The book is meant for teachers, students, researchers and industrialists who are working in the field of materials science, especially operations research and applied statistics.


Decision Making with Spherical Fuzzy Sets

Decision Making with Spherical Fuzzy Sets

Author: Cengiz Kahraman

Publisher: Springer Nature

Published: 2020-05-27

Total Pages: 551

ISBN-13: 3030454614

DOWNLOAD EBOOK

This book introduces readers to the novel concept of spherical fuzzy sets, showing how these sets can be applied in practice to solve various decision-making problems. It also demonstrates that these sets provide a larger preference volume in 3D space for decision-makers. Written by authoritative researchers, the various chapters cover a large amount of theoretical and practical information, allowing readers to gain an extensive understanding of both the fundamentals and applications of spherical fuzzy sets in intelligent decision-making and mathematical programming.


Data Mining

Data Mining

Author: Yong Yin

Publisher: Springer Science & Business Media

Published: 2011-03-16

Total Pages: 320

ISBN-13: 184996338X

DOWNLOAD EBOOK

Data Mining introduces in clear and simple ways how to use existing data mining methods to obtain effective solutions for a variety of management and engineering design problems. Data Mining is organised into two parts: the first provides a focused introduction to data mining and the second goes into greater depth on subjects such as customer analysis. It covers almost all managerial activities of a company, including: • supply chain design, • product development, • manufacturing system design, • product quality control, and • preservation of privacy. Incorporating recent developments of data mining that have made it possible to deal with management and engineering design problems with greater efficiency and efficacy, Data Mining presents a number of state-of-the-art topics. It will be an informative source of information for researchers, but will also be a useful reference work for industrial and managerial practitioners.


Fuzzy Sets and Their Extensions: Representation, Aggregation and Models

Fuzzy Sets and Their Extensions: Representation, Aggregation and Models

Author: Humberto Bustince

Publisher: Springer

Published: 2007-10-30

Total Pages: 674

ISBN-13: 3540737235

DOWNLOAD EBOOK

This carefully edited book presents an up-to-date state of current research in the use of fuzzy sets and their extensions. It pays particular attention to foundation issues and to their application to four important areas where fuzzy sets are seen to be an important tool for modeling and solving problems. The book’s 34 chapters deal with the subject with clarity and effectiveness. They include four review papers introducing some non-standard representations


Fundamentals of Fuzzy Sets

Fundamentals of Fuzzy Sets

Author: Didier Dubois

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 660

ISBN-13: 1461544297

DOWNLOAD EBOOK

Fundamentals of Fuzzy Sets covers the basic elements of fuzzy set theory. Its four-part organization provides easy referencing of recent as well as older results in the field. The first part discusses the historical emergence of fuzzy sets, and delves into fuzzy set connectives, and the representation and measurement of membership functions. The second part covers fuzzy relations, including orderings, similarity, and relational equations. The third part, devoted to uncertainty modelling, introduces possibility theory, contrasting and relating it with probabilities, and reviews information measures of specificity and fuzziness. The last part concerns fuzzy sets on the real line - computation with fuzzy intervals, metric topology of fuzzy numbers, and the calculus of fuzzy-valued functions. Each chapter is written by one or more recognized specialists and offers a tutorial introduction to the topics, together with an extensive bibliography.


Decision Making Process

Decision Making Process

Author: Denis Bouyssou

Publisher: John Wiley & Sons

Published: 2013-05-10

Total Pages: 671

ISBN-13: 1118619528

DOWNLOAD EBOOK

This book provides an overview of the main methods and results in the formal study of the human decision-making process, as defined in a relatively wide sense. A key aim of the approach contained here is to try to break down barriers between various disciplines encompassed by this field, including psychology, economics and computer science. All these approaches have contributed to progress in this very important and much-studied topic in the past, but none have proved sufficient so far to define a complete understanding of the highly complex processes and outcomes. This book provides the reader with state-of-the-art coverage of the field, essentially forming a roadmap to the field of decision analysis. The first part of the book is devoted to basic concepts and techniques for representing and solving decision problems, ranging from operational research to artificial intelligence. Later chapters provide an extensive overview of the decision-making process under conditions of risk and uncertainty. Finally, there are chapters covering various approaches to multi-criteria decision-making. Each chapter is written by experts in the topic concerned, and contains an extensive bibliography for further reading and reference.


Handbook of Granular Computing

Handbook of Granular Computing

Author: Witold Pedrycz

Publisher: John Wiley & Sons

Published: 2008-07-31

Total Pages: 1148

ISBN-13: 0470724153

DOWNLOAD EBOOK

Although the notion is a relatively recent one, the notions and principles of Granular Computing (GrC) have appeared in a different guise in many related fields including granularity in Artificial Intelligence, interval computing, cluster analysis, quotient space theory and many others. Recent years have witnessed a renewed and expanding interest in the topic as it begins to play a key role in bioinformatics, e-commerce, machine learning, security, data mining and wireless mobile computing when it comes to the issues of effectiveness, robustness and uncertainty. The Handbook of Granular Computing offers a comprehensive reference source for the granular computing community, edited by and with contributions from leading experts in the field. Includes chapters covering the foundations of granular computing, interval analysis and fuzzy set theory; hybrid methods and models of granular computing; and applications and case studies. Divided into 5 sections: Preliminaries, Fundamentals, Methodology and Algorithms, Development of Hybrid Models and Applications and Case Studies. Presents the flow of ideas in a systematic, well-organized manner, starting with the concepts and motivation and proceeding to detailed design that materializes in specific algorithms, applications and case studies. Provides the reader with a self-contained reference that includes all pre-requisite knowledge, augmented with step-by-step explanations of more advanced concepts. The Handbook of Granular Computing represents a significant and valuable contribution to the literature and will appeal to a broad audience including researchers, students and practitioners in the fields of Computational Intelligence, pattern recognition, fuzzy sets and neural networks, system modelling, operations research and bioinformatics.