Fuzzy Modelling

Fuzzy Modelling

Author: Witold Pedrycz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 399

ISBN-13: 1461313651

DOWNLOAD EBOOK

Fuzzy Modelling: Paradigms and Practice provides an up-to-date and authoritative compendium of fuzzy models, identification algorithms and applications. Chapters in this book have been written by the leading scholars and researchers in their respective subject areas. Several of these chapters include both theoretical material and applications. The editor of this volume has organized and edited the chapters into a coherent and uniform framework. The objective of this book is to provide researchers and practitioners involved in the development of models for complex systems with an understanding of fuzzy modelling, and an appreciation of what makes these models unique. The chapters are organized into three major parts covering relational models, fuzzy neural networks and rule-based models. The material on relational models includes theory along with a large number of implemented case studies, including some on speech recognition, prediction, and ecological systems. The part on fuzzy neural networks covers some fundamentals, such as neurocomputing, fuzzy neurocomputing, etc., identifies the nature of the relationship that exists between fuzzy systems and neural networks, and includes extensive coverage of their architectures. The last part addresses the main design principles governing the development of rule-based models. Fuzzy Modelling: Paradigms and Practice provides a wealth of specific fuzzy modelling paradigms, algorithms and tools used in systems modelling. Also included is a panoply of case studies from various computer, engineering and science disciplines. This should be a primary reference work for researchers and practitioners developing models of complex systems.


Fuzzy Modeling for Control

Fuzzy Modeling for Control

Author: Robert Babuška

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 269

ISBN-13: 9401148686

DOWNLOAD EBOOK

Rule-based fuzzy modeling has been recognised as a powerful technique for the modeling of partly-known nonlinear systems. Fuzzy models can effectively integrate information from different sources, such as physical laws, empirical models, measurements and heuristics. Application areas of fuzzy models include prediction, decision support, system analysis, control design, etc. Fuzzy Modeling for Control addresses fuzzy modeling from the systems and control engineering points of view. It focuses on the selection of appropriate model structures, on the acquisition of dynamic fuzzy models from process measurements (fuzzy identification), and on the design of nonlinear controllers based on fuzzy models. To automatically generate fuzzy models from measurements, a comprehensive methodology is developed which employs fuzzy clustering techniques to partition the available data into subsets characterized by locally linear behaviour. The relationships between the presented identification method and linear regression are exploited, allowing for the combination of fuzzy logic techniques with standard system identification tools. Attention is paid to the trade-off between the accuracy and transparency of the obtained fuzzy models. Control design based on a fuzzy model of a nonlinear dynamic process is addressed, using the concepts of model-based predictive control and internal model control with an inverted fuzzy model. To this end, methods to exactly invert specific types of fuzzy models are presented. In the context of predictive control, branch-and-bound optimization is applied. The main features of the presented techniques are illustrated by means of simple examples. In addition, three real-world applications are described. Finally, software tools for building fuzzy models from measurements are available from the author.


Insight into Fuzzy Modeling

Insight into Fuzzy Modeling

Author: Vilém Novák

Publisher: John Wiley & Sons

Published: 2016-04-04

Total Pages: 268

ISBN-13: 1119193184

DOWNLOAD EBOOK

Provides a unique and methodologically consistent treatment of various areas of fuzzy modeling and includes the results of mathematical fuzzy logic and linguistics This book is the result of almost thirty years of research on fuzzy modeling. It provides a unique view of both the theory and various types of applications. The book is divided into two parts. The first part contains an extensive presentation of the theory of fuzzy modeling. The second part presents selected applications in three important areas: control and decision-making, image processing, and time series analysis and forecasting. The authors address the consistent and appropriate treatment of the notions of fuzzy sets and fuzzy logic and their applications. They provide two complementary views of the methodology, which is based on fuzzy IF-THEN rules. The first, more traditional method involves fuzzy approximation and the theory of fuzzy relations. The second method is based on a combination of formal fuzzy logic and linguistics. A very important topic covered for the first time in book form is the fuzzy transform (F-transform). Applications of this theory are described in separate chapters and include image processing and time series analysis and forecasting. All of the mentioned components make this book of interest to students and researchers of fuzzy modeling as well as to practitioners in industry. Features: Provides a foundation of fuzzy modeling and proposes a thorough description of fuzzy modeling methodology Emphasizes fuzzy modeling based on results in linguistics and formal logic Includes chapters on natural language and approximate reasoning, fuzzy control and fuzzy decision-making, and image processing using the F-transform Discusses fuzzy IF-THEN rules for approximating functions, fuzzy cluster analysis, and time series forecasting Insight into Fuzzy Modeling is a reference for researchers in the fields of soft computing and fuzzy logic as well as undergraduate, master and Ph.D. students. Vilém Novák, D.Sc. is Full Professor and Director of the Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Czech Republic. Irina Perfilieva, Ph.D. is Full Professor, Senior Scientist, and Head of the Department of Theoretical Research at the Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Czech Republic. Antonín Dvorák, Ph.D. is Associate Professor, and Senior Scientist at the Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Czech Republic.


Fuzzy Modeling and Control

Fuzzy Modeling and Control

Author: Andrzej Piegat

Publisher: Physica

Published: 2013-03-19

Total Pages: 737

ISBN-13: 3790818240

DOWNLOAD EBOOK

In the last ten years, a true explosion of investigations into fuzzy modeling and its applications in control, diagnostics, decision making, optimization, pattern recognition, robotics, etc. has been observed. The attraction of fuzzy modeling results from its intelligibility and the high effectiveness of the models obtained. Owing to this the modeling can be applied for the solution of problems which could not be solved till now with any known conventional methods. The book provides the reader with an advanced introduction to the problems of fuzzy modeling and to one of its most important applications: fuzzy control. It is based on the latest and most significant knowledge of the subject and can be used not only by control specialists but also by specialists working in any field requiring plant modeling, process modeling, and systems modeling, e.g. economics, business, medicine, agriculture,and meteorology.


Fuzzy Systems

Fuzzy Systems

Author: Hung T. Nguyen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 532

ISBN-13: 1461555051

DOWNLOAD EBOOK

The analysis and control of complex systems have been the main motivation for the emergence of fuzzy set theory since its inception. It is also a major research field where many applications, especially industrial ones, have made fuzzy logic famous. This unique handbook is devoted to an extensive, organized, and up-to-date presentation of fuzzy systems engineering methods. The book includes detailed material and extensive bibliographies, written by leading experts in the field, on topics such as: Use of fuzzy logic in various control systems. Fuzzy rule-based modeling and its universal approximation properties. Learning and tuning techniques for fuzzy models, using neural networks and genetic algorithms. Fuzzy control methods, including issues such as stability analysis and design techniques, as well as the relationship with traditional linear control. Fuzzy sets relation to the study of chaotic systems, and the fuzzy extension of set-valued approaches to systems modeling through the use of differential inclusions. Fuzzy Systems: Modeling and Control is part of The Handbooks of Fuzzy Sets Series. The series provides a complete picture of contemporary fuzzy set theory and its applications. This volume is a key reference for systems engineers and scientists seeking a guide to the vast amount of literature in fuzzy logic modeling and control.


Fuzzy Modeling and Fuzzy Control

Fuzzy Modeling and Fuzzy Control

Author: Huaguang Zhang

Publisher: Springer Science & Business Media

Published: 2007-10-17

Total Pages: 423

ISBN-13: 081764539X

DOWNLOAD EBOOK

Fuzzy logic methodology has proven effective in dealing with complex nonlinear systems containing uncertainties that are otherwise difficult to model. Technology based on this methodology is applicable to many real-world problems, especially in the area of consumer products. This book presents the first comprehensive, unified treatment of fuzzy modeling and fuzzy control, providing tools for the control of complex nonlinear systems. Coverage includes model complexity, model precision, and computing time. This is an excellent reference for electrical, computer, chemical, industrial, civil, manufacturing, mechanical and aeronautical engineers, and also useful for graduate courses in electrical engineering, computer engineering, and computer science.


Modeling Uncertainty with Fuzzy Logic

Modeling Uncertainty with Fuzzy Logic

Author: Asli Celikyilmaz

Publisher: Springer

Published: 2009-04-01

Total Pages: 443

ISBN-13: 3540899243

DOWNLOAD EBOOK

The world we live in is pervaded with uncertainty and imprecision. Is it likely to rain this afternoon? Should I take an umbrella with me? Will I be able to find parking near the campus? Should I go by bus? Such simple questions are a c- mon occurrence in our daily lives. Less simple examples: What is the probability that the price of oil will rise sharply in the near future? Should I buy Chevron stock? What are the chances that a bailout of GM, Ford and Chrysler will not s- ceed? What will be the consequences? Note that the examples in question involve both uncertainty and imprecision. In the real world, this is the norm rather than exception. There is a deep-seated tradition in science of employing probability theory, and only probability theory, to deal with uncertainty and imprecision. The mon- oly of probability theory came to an end when fuzzy logic made its debut. H- ever, this is by no means a widely accepted view. The belief persists, especially within the probability community, that probability theory is all that is needed to deal with uncertainty. To quote a prominent Bayesian, Professor Dennis Lindley, “The only satisfactory description of uncertainty is probability.


Fuzzy Logic-Based Modeling in Collaborative and Blended Learning

Fuzzy Logic-Based Modeling in Collaborative and Blended Learning

Author: Hadjileontiadou, Sofia J.

Publisher: IGI Global

Published: 2015-07-31

Total Pages: 542

ISBN-13: 1466687061

DOWNLOAD EBOOK

Technology has dramatically changed the way in which knowledge is shared within and outside of traditional classroom settings. The application of fuzzy logic to new forms of technology-centered education has presented new opportunities for analyzing and modeling learner behavior. Fuzzy Logic-Based Modeling in Collaborative and Blended Learning explores the application of the fuzzy set theory to educational settings in order to analyze the learning process, gauge student feedback, and enable quality learning outcomes. Focusing on educational data analysis and modeling in collaborative and blended learning environments, this publication is an essential reference source for educators, researchers, educational administrators and designers, and IT specialists. This premier reference monograph presents key research on educational data analysis and modeling through the integration of research on advanced modeling techniques, educational technologies, fuzzy concept maps, hybrid modeling, neuro-fuzzy learning management systems, and quality of interaction.


Fuzzy Logic Control

Fuzzy Logic Control

Author: H. B. Verbruggen

Publisher: World Scientific

Published: 1999

Total Pages: 344

ISBN-13: 9789810238254

DOWNLOAD EBOOK

Fuzzy logic control has become an important methodology in control engineering. This volume deals with applications of fuzzy logic control in various domains. The contributions are divided into three parts. The first part consists of two state-of-the-art tutorials on fuzzy control and fuzzy modeling. Surveys of advanced methodologies are included in the second part. These surveys address fuzzy decision making and control, fault detection, isolation and diagnosis, complexity reduction in fuzzy systems and neuro-fuzzy methods. The third part contains application-oriented contributions from various fields, such as process industry, cement and ceramics, vehicle control and traffic management, electromechanical and production systems, avionics, biotechnology and medical applications. The book is intended for researchers both from the academic world and from industry.


Essentials of Fuzzy Modeling and Control

Essentials of Fuzzy Modeling and Control

Author: Ronald R. Yager

Publisher:

Published: 1994

Total Pages: 416

ISBN-13:

DOWNLOAD EBOOK

This book offers a thorough introduction to the field of fuzzy logic with complete coverage of both relevant theory and applications. With its comprehensive presentation of fuzzy logic as well as coverage of both fuzzy control and modeling, this text is destined to become the classic primer in this quickly developing field.