The new edition of this reference on fuzzy logic for energy systems offers a review of fuzzy logic, and examples in Matlab-Simulink. The new edition covers new topics like shading in PV, and day-ahead estimation of sun and wind data.
*Introduces cutting-edge control systems to a wide readership of engineers and students *The first book on neuro-fuzzy control systems to take a practical, applications-based approach, backed up with worked examples and case studies *Learn to use VHDL in real-world applications Introducing cutting edge control systems through real-world applications Neural networks and fuzzy logic based systems offer a modern control solution to AC machines used in variable speed drives, enabling industry to save costs and increase efficiency by replacing expensive and high-maintenance DC motor systems. The use of fast micros has revolutionised the field with sensorless vector control and direct torque control. This book reflects recent research findings and acts as a useful guide to the new generation of control systems for a wide readership of advanced undergraduate and graduate students, as well as practising engineers. The authors guide readers quickly and concisely through the complex topics of neural networks, fuzzy logic, mathematical modelling of electrical machines, power systems control and VHDL design. Unlike the academic monographs that have previously been published on each of these subjects, this book combines them and is based round case studies of systems analysis, control strategies, design, simulation and implementation. The result is a guide to applied control systems design that will appeal equally to students and professional design engineers. The book can also be used as a unique VHDL design aid, based on real-world power engineering applications.
The editors of this Special Issue titled “Intelligent Control in Energy Systems” have attempted to create a book containing original technical articles addressing various elements of intelligent control in energy systems. In response to our call for papers, we received 60 submissions. Of those submissions, 27 were published and 33 were rejected. In this book, we offer the 27 accepted technical articles as well as one editorial. Authors from 15 countries (China, Netherlands, Spain, Tunisia, United Sates of America, Korea, Brazil, Egypt, Denmark, Indonesia, Oman, Canada, Algeria, Mexico, and the Czech Republic) elaborate on several aspects of intelligent control in energy systems. The book covers a broad range of topics including fuzzy PID in automotive fuel cell and MPPT tracking, neural networks for fuel cell control and dynamic optimization of energy management, adaptive control on power systems, hierarchical Petri Nets in microgrid management, model predictive control for electric vehicle battery and frequency regulation in HVAC systems, deep learning for power consumption forecasting, decision trees for wind systems, risk analysis for demand side management, finite state automata for HVAC control, robust μ-synthesis for microgrids, and neuro-fuzzy systems in energy storage.
Control systems play an important role in engineering. Fuzzy logic is the natural choice for designing control applications and is the most popular and appropriate for the control of home and industrial appliances. Academic and industrial experts are constantly researching and proposing innovative and effective fuzzy control systems. This book is an edited volume and has 21 innovative chapters arranged into five sections covering applications of fuzzy control systems in energy and power systems, navigation systems, imaging, and industrial engineering. Overall, this book provides a rich set of modern fuzzy control systems and their applications and will be a useful resource for the graduate students, researchers, and practicing engineers in the field of electrical engineering.
Fuzzy logic control has become an important methodology in control engineering. This volume deals with applications of fuzzy logic control in various domains. The contributions are divided into three parts. The first part consists of two state-of-the-art tutorials on fuzzy control and fuzzy modeling. Surveys of advanced methodologies are included in the second part. These surveys address fuzzy decision making and control, fault detection, isolation and diagnosis, complexity reduction in fuzzy systems and neuro-fuzzy methods. The third part contains application-oriented contributions from various fields, such as process industry, cement and ceramics, vehicle control and traffic management, electromechanical and production systems, avionics, biotechnology and medical applications. The book is intended for researchers both from the academic world and from industry.
In the early 1970s, fuzzy systems and fuzzy control theories added a new dimension to control systems engineering. From its beginnings as mostly heuristic and somewhat ad hoc, more recent and rigorous approaches to fuzzy control theory have helped make it an integral part of modern control theory and produced many exciting results. Yesterday's "art
Fuzzy logic techniques have had extraordinary growth in various engineering systems. The developments in engineering sciences have caused apprehension in modern years due to high-tech industrial processes with ever-increasing levels of complexity. Advanced Fuzzy Logic Approaches in Engineering Science provides innovative insights into a comprehensive range of soft fuzzy logic techniques applied in various fields of engineering problems like fuzzy sets theory, adaptive neuro fuzzy inference system, and hybrid fuzzy logic genetic algorithms belief networks in industrial and engineering settings. The content within this publication represents the work of particle swarms, fuzzy computing, and rough sets. It is a vital reference source for engineers, research scientists, academicians, and graduate-level students seeking coverage on topics centered on the applications of fuzzy logic in high-tech industrial processes.
This book covers the use of fuzzy logic for power grids. Power systems need to accommodate intermittent renewables and changes in loads while ensuring high power quality. Fuzzy logic uses values between 0 and 1 rather than binary ones, offering advantages in adaptability for energy systems with renewables.
Most of the research and experiments in the fields of modeling and control systems have spent significant efforts to find rules from various complicated phenomena by principles, observations, measured data, logic derivations. The rules are normally summarized as concise and quantitative expressions or “models”. “Identification” provides mechanisms to establish the models and “control” provides mechanisms to improve system performances. This book reflects the relevant studies and applications in the area of renewable energies, with the latest research from interdisciplinary theoretical studies, computational algorithm development to exemplary applications. It discusses how modeling and control methods such as recurrent neural network, Pitch Angle Control, Fuzzy control, Sliding Mode Control and others are used in renewable systems. It covers topics as photovoltaic systems, wind turbines, maximum power point tracking, batteries for renewable energies, solar energy, thermal energy and so on. This book is edited and written by leading experts in the field and offers an ideal reference guide for researchers and engineers in the fields of electrical/electronic engineering, control system and energy.
The book compiles the research works related to smart solutions concept in context to smart energy systems, maintaining electrical grid discipline and resiliency, computational collective intelligence consisted of interaction between smart devices, smart environments and smart interactions, as well as information technology support for such areas. It includes high-quality papers presented in the International Conference on Intelligent Computing Techniques for Smart Energy Systems organized by Manipal University Jaipur. This book will motivate scholars to work in these areas. The book also prophesies their approach to be used for the business and the humanitarian technology development as research proposal to various government organizations for funding approval.