Artificial Neural Networks in Hydrology

Artificial Neural Networks in Hydrology

Author: R.S. Govindaraju

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 338

ISBN-13: 9401593418

DOWNLOAD EBOOK

R. S. GOVINDARAJU and ARAMACHANDRA RAO School of Civil Engineering Purdue University West Lafayette, IN. , USA Background and Motivation The basic notion of artificial neural networks (ANNs), as we understand them today, was perhaps first formalized by McCulloch and Pitts (1943) in their model of an artificial neuron. Research in this field remained somewhat dormant in the early years, perhaps because of the limited capabilities of this method and because there was no clear indication of its potential uses. However, interest in this area picked up momentum in a dramatic fashion with the works of Hopfield (1982) and Rumelhart et al. (1986). Not only did these studies place artificial neural networks on a firmer mathematical footing, but also opened the dOOf to a host of potential applications for this computational tool. Consequently, neural network computing has progressed rapidly along all fronts: theoretical development of different learning algorithms, computing capabilities, and applications to diverse areas from neurophysiology to the stock market. . Initial studies on artificial neural networks were prompted by adesire to have computers mimic human learning. As a result, the jargon associated with the technical literature on this subject is replete with expressions such as excitation and inhibition of neurons, strength of synaptic connections, learning rates, training, and network experience. ANNs have also been referred to as neurocomputers by people who want to preserve this analogy.


Soft Computing in Water Resources Engineering

Soft Computing in Water Resources Engineering

Author: G. Tayfur

Publisher: WIT Press

Published: 2014-11-02

Total Pages: 289

ISBN-13: 1845646363

DOWNLOAD EBOOK

Engineers have attempted to solve water resources engineering problems with the help of empirical, regression-based and numerical models. Empirical models are not universal, nor are regression-based models. The numerical models are, on the other hand, physics-based but require substantial data measurement and parameter estimation. Hence, there is a need to employ models that are robust, user-friendly, and practical and that do not have the shortcomings of the existing methods. Artificial intelligence methods meet this need. Soft Computing in Water Resources Engineering introduces the basics of artificial neural networks (ANN), fuzzy logic (FL) and genetic algorithms (GA). It gives details on the feed forward back propagation algorithm and also introduces neuro-fuzzy modelling to readers. Artificial intelligence method applications covered in the book include predicting and forecasting floods, predicting suspended sediment, predicting event-based flow hydrographs and sedimentographs, locating seepage path in an earth-fill dam body, and the predicting dispersion coefficient in natural channels. The author also provides an analysis comparing the artificial intelligence models and contemporary non-artificial intelligence methods (empirical, numerical, regression, etc.). The ANN, FL, and GA are fairly new methods in water resources engineering. The first publications appeared in the early 1990s and quite a few studies followed in the early 2000s. Although these methods are currently widely known in journal publications, they are still very new for many scientific readers and they are totally new for students, especially undergraduates. Numerical methods were first taught at the graduate level but are now taught at the undergraduate level. There are already a few graduate courses developed on AI methods in engineering and included in the graduate curriculum of some universities. It is expected that these courses, too, will soon be taught at the undergraduate levels.


Neural Networks for Hydrological Modeling

Neural Networks for Hydrological Modeling

Author: Robert Abrahart

Publisher: CRC Press

Published: 2004-05-15

Total Pages: 316

ISBN-13: 0203024117

DOWNLOAD EBOOK

A new approach to the fast-developing world of neural hydrological modelling, this book is essential reading for academics and researchers in the fields of water sciences, civil engineering, hydrology and physical geography. Each chapter has been written by one or more eminent experts working in various fields of hydrological modelling. The b


Fuzzy Systems

Fuzzy Systems

Author: Hung T. Nguyen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 532

ISBN-13: 1461555051

DOWNLOAD EBOOK

The analysis and control of complex systems have been the main motivation for the emergence of fuzzy set theory since its inception. It is also a major research field where many applications, especially industrial ones, have made fuzzy logic famous. This unique handbook is devoted to an extensive, organized, and up-to-date presentation of fuzzy systems engineering methods. The book includes detailed material and extensive bibliographies, written by leading experts in the field, on topics such as: Use of fuzzy logic in various control systems. Fuzzy rule-based modeling and its universal approximation properties. Learning and tuning techniques for fuzzy models, using neural networks and genetic algorithms. Fuzzy control methods, including issues such as stability analysis and design techniques, as well as the relationship with traditional linear control. Fuzzy sets relation to the study of chaotic systems, and the fuzzy extension of set-valued approaches to systems modeling through the use of differential inclusions. Fuzzy Systems: Modeling and Control is part of The Handbooks of Fuzzy Sets Series. The series provides a complete picture of contemporary fuzzy set theory and its applications. This volume is a key reference for systems engineers and scientists seeking a guide to the vast amount of literature in fuzzy logic modeling and control.


Advances In Data-based Approaches For Hydrologic Modeling And Forecasting

Advances In Data-based Approaches For Hydrologic Modeling And Forecasting

Author: Bellie Sivakumar

Publisher: World Scientific

Published: 2010-08-10

Total Pages: 542

ISBN-13: 9814464759

DOWNLOAD EBOOK

This book comprehensively accounts the advances in data-based approaches for hydrologic modeling and forecasting. Eight major and most popular approaches are selected, with a chapter for each — stochastic methods, parameter estimation techniques, scaling and fractal methods, remote sensing, artificial neural networks, evolutionary computing, wavelets, and nonlinear dynamics and chaos methods. These approaches are chosen to address a wide range of hydrologic system characteristics, processes, and the associated problems. Each of these eight approaches includes a comprehensive review of the fundamental concepts, their applications in hydrology, and a discussion on potential future directions.


Hydrological Data Driven Modelling

Hydrological Data Driven Modelling

Author: Renji Remesan

Publisher: Springer

Published: 2014-11-03

Total Pages: 261

ISBN-13: 3319092359

DOWNLOAD EBOOK

This book explores a new realm in data-based modeling with applications to hydrology. Pursuing a case study approach, it presents a rigorous evaluation of state-of-the-art input selection methods on the basis of detailed and comprehensive experimentation and comparative studies that employ emerging hybrid techniques for modeling and analysis. Advanced computing offers a range of new options for hydrologic modeling with the help of mathematical and data-based approaches like wavelets, neural networks, fuzzy logic, and support vector machines. Recently machine learning/artificial intelligence techniques have come to be used for time series modeling. However, though initial studies have shown this approach to be effective, there are still concerns about their accuracy and ability to make predictions on a selected input space.


Environmental and Hydrological Systems Modelling

Environmental and Hydrological Systems Modelling

Author: A W Jayawardena

Publisher: CRC Press

Published: 2014-01-21

Total Pages: 540

ISBN-13: 041546532X

DOWNLOAD EBOOK

Mathematical modelling has become an indispensable tool for engineers, scientists, planners, decision makers and many other professionals to make predictions of future scenarios as well as real impending events. As the modelling approach and the model to be used are problem specific, no single model or approach can be used to solve all problems, and there are constraints in each situation. Modellers therefore need to have a choice when confronted with constraints such as lack of sufficient data, resources, expertise and time. Environmental and Hydrological Systems Modelling provides the tools needed by presenting different approaches to modelling the water environment over a range of spatial and temporal scales. Their applications are shown with a series of case studies, taken mainly from the Asia-Pacific Region. Coverage includes: Population dynamics Reaction kinetics Water quality systems Longitudinal dispersion Time series analysis and forecasting Artificial neural networks Fractals and chaos Dynamical systems Support vector machines Fuzzy logic systems Genetic algorithms and genetic programming This book will be of great value to advanced students, professionals, academics and researchers working in the water environment.


Advanced Modelling and Innovations in Water Resources Engineering

Advanced Modelling and Innovations in Water Resources Engineering

Author: Chintalacheruvu Madhusudana Rao

Publisher: Springer Nature

Published: 2021-11-16

Total Pages: 772

ISBN-13: 9811646295

DOWNLOAD EBOOK

This book presents select proceedings of the national conference on Advanced Modelling and Innovations in Water Resources Engineering (AMIWRE 2021) and examines numerous advancements in the field of water resources engineering and management towards sustainable development of environment. The topics covered includes river basin planning and development, reservoir planning and management, integrated water management, reservoir sedimentation, soil erosion and sedimentation, agricultural technologies for climate change mitigation, uncertainty analysis in hydrology, water distribution networks, floods and droughts management, water quality modelling, environmental modelling, environmental impact assessment, urban water management, open channel hydraulics, hydraulic structures, groundwater hydraulics, groundwater flow and contaminant transport modelling, computational fluid dynamics, ocean engineering, HEC-RAC, SWAT, MIKE, MODFLOW models applications, numerical analysis in water resources engineering, climate change impacts on hydrology, optimization techniques in water resources, soft computing techniques and applications in water resources and remote sensing / geospatial techniques in water resources. This book will be beneficial for water sectors development mainly agricultural production, reservoir operations, improvement of water quality, flood and drought controls, designing hydraulic structures and geospatial analysis. This book will be a valuable reference for faculties, research scholars, students, design engineers, industrialists, R & D personnel and practitioners working in water resources engineering and its related fields.


Handbook of HydroInformatics

Handbook of HydroInformatics

Author: Saeid Eslamian

Publisher: Elsevier

Published: 2022-12-06

Total Pages: 422

ISBN-13: 0128219521

DOWNLOAD EBOOK

Handbook of HydroInformatics Volume III: Water Data Management Best Practices presents the latest and most updated data processing techniques that are fundamental to Water Science and Engineering disciplines. These include a wide range of the new methods that are used in hydro-modeling such as Atmospheric Teleconnection Pattern, CONUS-Scale Hydrologic Modeling, Copula Function, Decision Support System, Downscaling Methods, Dynamic System Modeling, Economic Impacts and Models, Geostatistics and Geospatial Frameworks, Hydrologic Similarity Indices, Hydropower/Renewable Energy Models, Sediment Transport Dynamics Advanced Models, Social Data Mining, and Wavelet Transforms. This volume is an example of true interdisciplinary work. The audience includes postgraduates and above interested in Water Science, Geotechnical Engineering, Soil Science, Civil Engineering, Chemical Engineering, Computer Engineering, Engineering, Applied Science, Earth and Geoscience, Atmospheric Science, Geography, Environment Science, Natural Resources, Mathematical Science, and Social Sciences. It is a fully comprehensive handbook which provides all the information needed related to the best practices for managing water data. - Contributions from global experts in the fields of data management research, climate change and resilience, insufficient data problem, etc. - Thorough applied examples and case studies in each chapter, providing the reader with real world scenarios for comparison. - Includes a wide range of new methods that are used in hydro-modeling, with step-by-step guides on how to use them.


Innovation in Information Systems and Technologies to Support Learning Research

Innovation in Information Systems and Technologies to Support Learning Research

Author: Mohammed Serrhini

Publisher: Springer Nature

Published: 2019-11-30

Total Pages: 659

ISBN-13: 3030367789

DOWNLOAD EBOOK

This book provides glimpses into contemporary research in information systems & technology, learning, artificial intelligence (AI), machine learning, and security and how it applies to the real world, but the ideas presented also span the domains of telehealth, computer vision, the role and use of mobile devices, brain–computer interfaces, virtual reality, language and image processing and big data analytics and applications. Great research arises from asking pertinent research questions. This book reveals some of the authors’ “beautiful questions” and how they develop the subsequent “what if” and “how” questions, offering readers food for thought and whetting their appetite for further research by the same authors.