Deep Learning for Robot Perception and Cognition

Deep Learning for Robot Perception and Cognition

Author: Alexandros Iosifidis

Publisher: Academic Press

Published: 2022-02-04

Total Pages: 638

ISBN-13: 0323885721

DOWNLOAD EBOOK

Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis


Probabilistic Robotics

Probabilistic Robotics

Author: Sebastian Thrun

Publisher: MIT Press

Published: 2005-08-19

Total Pages: 668

ISBN-13: 0262201623

DOWNLOAD EBOOK

An introduction to the techniques and algorithms of the newest field in robotics. Probabilistic robotics is a new and growing area in robotics, concerned with perception and control in the face of uncertainty. Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.


Factor Graphs for Robot Perception

Factor Graphs for Robot Perception

Author: Frank Dellaert

Publisher:

Published: 2017-08-15

Total Pages: 162

ISBN-13: 9781680833263

DOWNLOAD EBOOK

Reviews the use of factor graphs for the modeling and solving of large-scale inference problems in robotics. Factor graphs are introduced as an economical representation within which to formulate the different inference problems, setting the stage for the subsequent sections on practical methods to solve them.


Active Perception and Robot Vision

Active Perception and Robot Vision

Author: Arun K. Sood

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 747

ISBN-13: 3642772250

DOWNLOAD EBOOK

Intelligent robotics has become the focus of extensive research activity. This effort has been motivated by the wide variety of applications that can benefit from the developments. These applications often involve mobile robots, multiple robots working and interacting in the same work area, and operations in hazardous environments like nuclear power plants. Applications in the consumer and service sectors are also attracting interest. These applications have highlighted the importance of performance, safety, reliability, and fault tolerance. This volume is a selection of papers from a NATO Advanced Study Institute held in July 1989 with a focus on active perception and robot vision. The papers deal with such issues as motion understanding, 3-D data analysis, error minimization, object and environment modeling, object detection and recognition, parallel and real-time vision, and data fusion. The paradigm underlying the papers is that robotic systems require repeated and hierarchical application of the perception-planning-action cycle. The primary focus of the papers is the perception part of the cycle. Issues related to complete implementations are also discussed.


Applications of Mobile Robots

Applications of Mobile Robots

Author:

Publisher: BoD – Books on Demand

Published: 2019-03-20

Total Pages: 230

ISBN-13: 1789857554

DOWNLOAD EBOOK

This book includes a selection of research work in the mobile robotics area, where several interesting topics are presented. In this way we find a review of multi-agents, different techniques applied to the navigation systems, artificial intelligence algorithms, which include deep learning applications, systems where a Kalman filter estimator is extended for visual odometry, and finally the design of an on-chip system for the execution of cognitive agents. Additionally, the development of different ideas in mobile robot applications are included and hopefully will be useful and enriching for readers.


Introduction to Mobile Robot Control

Introduction to Mobile Robot Control

Author: Spyros G Tzafestas

Publisher: Elsevier

Published: 2013-10-03

Total Pages: 718

ISBN-13: 0124171036

DOWNLOAD EBOOK

Introduction to Mobile Robot Control provides a complete and concise study of modeling, control, and navigation methods for wheeled non-holonomic and omnidirectional mobile robots and manipulators. The book begins with a study of mobile robot drives and corresponding kinematic and dynamic models, and discusses the sensors used in mobile robotics. It then examines a variety of model-based, model-free, and vision-based controllers with unified proof of their stabilization and tracking performance, also addressing the problems of path, motion, and task planning, along with localization and mapping topics. The book provides a host of experimental results, a conceptual overview of systemic and software mobile robot control architectures, and a tour of the use of wheeled mobile robots and manipulators in industry and society. Introduction to Mobile Robot Control is an essential reference, and is also a textbook suitable as a supplement for many university robotics courses. It is accessible to all and can be used as a reference for professionals and researchers in the mobile robotics field. - Clearly and authoritatively presents mobile robot concepts - Richly illustrated throughout with figures and examples - Key concepts demonstrated with a host of experimental and simulation examples - No prior knowledge of the subject is required; each chapter commences with an introduction and background


Introduction to Autonomous Mobile Robots, second edition

Introduction to Autonomous Mobile Robots, second edition

Author: Roland Siegwart

Publisher: MIT Press

Published: 2011-02-18

Total Pages: 473

ISBN-13: 0262015358

DOWNLOAD EBOOK

The second edition of a comprehensive introduction to all aspects of mobile robotics, from algorithms to mechanisms. Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques. This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners. Curriculum developed by Dr. Robert King, Colorado School of Mines, and Dr. James Conrad, University of North Carolina-Charlotte, to accompany the National Instruments LabVIEW Robotics Starter Kit, are available. Included are 13 (6 by Dr. King and 7 by Dr. Conrad) laboratory exercises for using the LabVIEW Robotics Starter Kit to teach mobile robotics concepts.


Multi-Sensor Information Fusion

Multi-Sensor Information Fusion

Author: Xue-Bo Jin

Publisher: MDPI

Published: 2020-03-23

Total Pages: 602

ISBN-13: 3039283022

DOWNLOAD EBOOK

This book includes papers from the section “Multisensor Information Fusion”, from Sensors between 2018 to 2019. It focuses on the latest research results of current multi-sensor fusion technologies and represents the latest research trends, including traditional information fusion technologies, estimation and filtering, and the latest research, artificial intelligence involving deep learning.


Cognitive Processing in Behavior-Based Perception of Autonomous Off-Road Vehicles

Cognitive Processing in Behavior-Based Perception of Autonomous Off-Road Vehicles

Author: Patrick Wolf

Publisher: Patrick Wolf

Published: 2022-10-02

Total Pages: 289

ISBN-13: 3843951659

DOWNLOAD EBOOK

This work addresses the environmental recognition of autonomous off-road vehicles. Algorithms, like deep learning, offer impressive performance regarding the classification and segmentation of a scene. However, context changes, scene variabilities, or disturbances pose significant challenges to these approaches and cause perception failures. A challenge is achieving the universal applicability of perception algorithms. Usually, an algorithm fails in particular situations due to unconsidered circumstances in the design phase, and complexity prevents fully considering all details. Accordingly, this thesis aims to increase the perception’s robustness through context and data incorporation. Furthermore, it derives concepts for transferring methods to other robots and scenes. A hint that such a task is achievable provides human cognition, which is remarkably skillful and adjusts to arbitrary situations. Biologically motivated perception and cognitive research indicate how an achievable perception design might function, leading to guidelines for artificial perception conception. The paradigm of behavior-based systems suits these criteria due to modularity, reactivity, and robustness. It allows realizing robust and transferable perception and control systems. Consequently, the thesis proposes a novel and reconfigurable behavior-based top-down and bottom-up perception approach. Quality assessment for data filtering and deviation control is a central aspect, resulting in improved perception and data fusion results. Attentional processing allows for selecting data based on attractiveness, task, environmental context, and history. Further, context assessment of classification results enables reasoning according to the robot’s memories and knowledge. Validation uses five demonstrator vehicles operating in diverse environments and fulfilling distinct tasks. Here, a robust performance was achievable, and perception adjusted well to the tested scenes and hardware layouts.