This reference work will focus on the corrosion of steel in concrete, the main cause of deterioration of reinforced concrete structures. A survey on well-established mechanisms and concepts is given, but the main emphasis lies on new methods and materials for preventive measures, condition assessment and repair.
Humankind's use of zinc stretches back to antiquity, and it was a component in some of the earliest known alloy systems. Even though metallic zinc was not "discovered" in Europe until 1746 (by Marggral), zinc ores were used for making brass in biblical times, and an 87% zinc alloy was found in prehistoric ruins in Transylvania. Also, zinc (the metal) was produced in quantity in India as far back as the thirteenth century, well before it was recognized as being a separate element. The uses of zinc are manifold, ranging from galvanizing to die castings to electronics. It is a preferred anode material in high-energy-density batteries (e.g., Ni/Zn, Ag/Zn, ZnJair), so that its electrochemistry, particularly in alkaline media, has been extensively explored. In the passive state, zinc is photoelectrochemically active, with the passive film displaying n-type characteristics. For the same reason that zinc is considered to be an excellent battery anode, it has found extensive use as a sacrificial anode for the protection of ships and pipelines from corrosion. Indeed, aside from zinc's well-known attributes as an alloying element, its widespread use is principally due to its electrochemical properties, which include a well-placed position in the galvanic series for protecting iron and steel in natural aqueous environments and its reversible dissolution behavior in alkaline solutions.
Reinforced concrete is one of the most widely used modern materials of construction. It is comparatively cheap, readily available, and suitable for a variety of building and construction applications. Galvanized Steel Reinforcement in Concrete provides a detailed resource covering all aspects of this important material. Both servicability and durability aspects are well covered, with all the information needed maximise the life of buildings constructed from it. Containing an up-to-date and comprehensive collection of technical information and data from world renound authors, it will be a valuable source of reference for academics, researchers, students and professionals alike. - Provides information vital to prolong the life of buildings constructed from this versatile material - Brings together a disparate body of knowledge from many parts of the world into a concise and authoritative text - Containing an up-to-date and comprehensive collection of technical information
Essential reading for researchers, practitioners, and engineers, this book covers not only all the important aspects in the field of corrosion of steel reinforced concrete but also discusses new topics and future trends. Theoretical concepts of corrosion of steel in concrete structures, the variety of reinforcing materials and concrete, including stainless steel and galvanized steel, measurements and evaluations, such as electrochemical techniques and acoustic emission, protection and maintenance methods, and modelling, latest developments, and future trends in the field are discussed. - Comprehensive coverage of the corrosion of steel bars in concrete, investigating the range of reinforcing materials, and types of concrete - Introduces the latest measuring methods, data collection, and advanced modeling techniques - Second edition covers a range of new, emerging topics such as the concept of chloride threshold value, concrete permeability and chloride diffusion, the role of steel microstructure, and innovations in corrosion detection devices
Discover a one-stop resource for in-depth knowledge on epoxy composites from leading voices in the field Used in a wide variety of materials engineering applications, epoxy composites are highly relevant to the work of engineers and scientists in many fields. Recent developments have allowed for significant advancements in their preparation, processing and characterization that are highly relevant to the aerospace and automobile industry, among others. In Epoxy Composites: Fabrication, Characterization and Applications, a distinguished team of authors and editors deliver a comprehensive and straightforward summary of the most recent developments in the area of epoxy composites. The book emphasizes their preparation, characterization and applications, providing a complete understanding of the correlation of rheology, cure reaction, morphology, and thermo-mechanical properties with filler dispersion. Readers will learn about a variety of topics on the cutting-edge of epoxy composite fabrication and characterization, including smart epoxy composites, theoretical modeling, recycling and environmental issues, safety issues, and future prospects for these highly practical materials. Readers will also benefit from the inclusion of: A thorough introduction to epoxy composites, their synthesis and manufacturing, and micro- and nano-scale structure formation in epoxy and clay nanocomposites An exploration of long fiber reinforced epoxy composites and eco-friendly epoxy-based composites Practical discussions of the processing of epoxy composites based on carbon nanomaterials and the thermal stability and flame retardancy of epoxy composites An analysis of the spectroscopy and X-ray scattering studies of epoxy composites Perfect for materials scientists, polymer chemists, and mechanical engineers, Epoxy Composites: Fabrication, Characterization and Applications will also earn a place in the libraries of engineering scientists working in industry and process engineers seeking a comprehensive and exhaustive resource on epoxy composites.