Contributions from 80 world-renowned authorities representing a broad international background lend Fungal Biotechnology in Agricultural, Food, and Environmental Applicationsfirst-class information on the biotechnological potential of entomopathogenic fungi and ergot alkaloids, applications of Trichoderma in disease control, and the d
Contributions from 80 world-renowned authorities representing a broad international background lend Fungal Biotechnology in Agricultural, Food, and Environmental Applicationsfirst-class information on the biotechnological potential of entomopathogenic fungi and ergot alkaloids, applications of Trichoderma in disease control, and the development of mycoherbicides. Additional topics include fungal control of nematodes, control of plant disease by arbuscular mycorrhizal fungi, strategies for controlling vegetable and fruit crops, molecular biology tactics with mycotoxigenic fungi and the development of biofungicides, production of edible fungi, fermented foods, and high-value products like mycoprotein.
Fungal nanotechnology has great prospects for developing new products with industrial, agricultural, medicinal, and consumer applications in a wide range of sectors. The fields of chemical engineering, agri-food, biochemistry, pharmaceuticals, diagnostics, and medical device development all employ fungal products, with fungal nanomaterials currently used in applications ranging from drug development to the food industry and agricultural biotechnology. Fungal agents are an environmentally friendly, clean, non‐toxic agent for the synthesis of metal nanoparticles and employ both intracellular and extracellular methods. The simplicity of scaling up and downstream processing and the presence of fungal mycelia which afford an increased surface area provide key advantages. In addition, the large spectrum of synthesized nanoparticle morphologies and the substantially faster biosynthesis rate in cell-free filtrate (due to the higher amount of proteins secreted in fungi) make this a particularly enticing route. Understanding the diversity of fungi in assorted ecosystems, as well as their interactions with other microorganisms, animals, and plants, underpins real and innovative technological developments and the applications of metal nanoparticles in many disciplines including agriculture, catalysis, and biomedical biosensors. Importantly, biogenic fungal nanoparticles show significant synergistic characteristics when combined with antibiotics and fungicides to offer substantially greater resistance to microbial growth and applications in nanomedicine ranging from topical ointments and bandages for wound healing to coated stents.
Mushroom Biotechnology: Developments and Applications is a comprehensive book to provide a better understanding of the main interactions between biological, chemical and physical factors directly involved in biotechnological procedures of using mushrooms as bioremediation tools, high nutritive food sources, and as biological helpers in healing serious diseases of the human body. The book points out the latest research results and original approaches to the use of edible and medicinal mushrooms as efficient bio-instruments to reduce the environment and food crises. This is a valuable scientific resource to any researcher, professional, and student interested in the fields of mushroom biotechnology, bioengineering, bioremediation, biochemistry, eco-toxicology, environmental engineering, food engineering, mycology, pharmacists, and more. - Includes both theoretical and practical tools to apply mushroom biotechnology to further research and improve value added products - Presents innovative biotechnological procedures applied for growing and developing many species of edible and medicinal mushrooms by using high-tech devices - Reveals the newest applications of mushroom biotechnology to produce organic food and therapeutic products, to biologically control the pathogens of agricultural crops, and to remove or mitigate the harmful consequences of quantitative expansion and qualitative diversification of hazardous contaminants in natural environment
The Handbook of Fungal Biotechnology offers the newest developments from the frontiers of fungal biochemical and molecular processes and industrial and semi-industrial applications of fungi. This second edition highlights the need for the integration of a number of scientific disciplines and technologies in modern fungal biotechnology and reigns as
Fungi bio-prospects in sustainable agriculture, environment and nanotechnology is a three-volume series that has been designed to explore the huge potential of the many diverse applications of fungi to human life. The series unveils the latest developments and scientific advances in the study of the biodiversity of fungi, extremophilic fungi, and fungal secondary metabolites and enzymes, while also presenting cutting-edge molecular tools used to study fungi. Readers will learn all about the recent progress and future potential applications of fungi in agriculture, environmental remediation, industry, food safety, medicine, and nanotechnology. Volume 1 will cover the biodiversity of fungi and the associated biopotential applications. This volume offers insights into both basic and advanced biotechnological applications in human welfare and sustainable agriculture. The chapters shed light on the different roles of fungi as a bio-fertilizer, a bio-control agent, and a component of microbial inoculants. They also focus on the various applications of fungi in bio-fuel production, nano-technology, and in the management of abiotic stresses such as drought, salinity, and metal toxicity. - Provides a deep understanding of fungi and summarizes fungi's various applications in the fields of microbiology and sustainable agriculture - Describes the role of fungal inoculants as biocontrol agents, and in improved stress tolerance and growth of plants
The Handbook of Fungal Biotechnology offers the newest developments from the frontiers of fungal biochemical and molecular processes and industrial and semi-industrial applications of fungi. This second edition highlights the need for the integration of a number of scientific disciplines and technologies in modern fungal biotechnology and reigns as the top source on current molecular, biochemical, and medical technologies and commercial usages for fungi. Authored by 81 world-renowned scientists from both industry and academia, it addresses contemporary issues pertaining to intellectual property rights, biodiversity, and biosafety, and devotes an entire section to medical biotechnology.
This book summarizes the early successes, drawbacks and accomplishments in cell biology and cell biotechnology achieved by the latest projects performed on the International Space Station ISS. It also depicts outcomes of experiments in tissue engineering, cancer research and drug design and reveals the chances that research in Space offers for medical application on Earth. This SpringerBriefs volume provides an overview on the latest international activities in Space and gives an outlook on the potential of biotechnological research in Space in future. This volume is written for students and researchers in Biomedicine, Biotechnology and Pharmacology and may specifically be of interest to scientists with focus on protein sciences, crystallization, tissue engineering, drug design and cancer research.
The fungal kingdom consists of a wide variety of organisms with a diverse range of forms and functions. Fungi have been utilized for thousands of years and their importance in agriculture, medicine, food production and the environmental sciences is well known. New advances in genomic and metabolomic technologies have allowed further developments in the use of fungi in industry and medicine, increasing the need for a compilation of new applications, developments and technologies across the mycological field. Applied Mycology brings together a range of contributions, highlighting the diverse nature of current research. Chapters include discussions of fungal associations in the environment, agriculture and forestry, long established and novel applications of fungi in fermentation, the use of fungi in the pharmaceutical industry, the growing recognition of fungal infections, current interests in the use fungal enzymes in biotechnology and the new and emerging field of myconanotechnology. Demonstrating the broad coverage and importance of mycological research, this book will be of interest to researchers and students in all biological sciences.