Fundamentals of the Theory of Operator Algebras. Volume III

Fundamentals of the Theory of Operator Algebras. Volume III

Author: Richard V. Kadison

Publisher: American Mathematical Soc.

Published: 1998-01-13

Total Pages: 290

ISBN-13: 0821894692

DOWNLOAD EBOOK

This volume is the companion volume to Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory (Graduate Studies in Mathematics series, Volume 15). The goal of the text proper is to teach the subject and lead readers to where the vast literature--in the subject specifically and in its many applications--becomes accessible. The choice of material was made from among the fundamentals of what may be called the "classical" theory of operator algebras. This volume contains the written solutions to the exercises in the Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory.


Fundamentals of the Theory of Operator Algebras. Volume IV

Fundamentals of the Theory of Operator Algebras. Volume IV

Author: Richard V. Kadison

Publisher: American Mathematical Soc.

Published: 1998-01-13

Total Pages: 604

ISBN-13: 0821894684

DOWNLOAD EBOOK

This volume is the companion volume to Fundamentals of the Theory of Operator Algebras. Volume II--Advanced Theory (Graduate Studies in Mathematics series, Volume 16). The goal of the text proper is to teach the subject and lead readers to where the vast literature--in the subject specifically and in its many applications--becomes accessible. The choice of material was made from among the fundamentals of what may be called the "classical" theory of operator algebras. This volume contains the written solutions to the exercises in the Fundamentals of the Theory of Operator Algebras. Volume II--Advanced Theory.


Theory of Operator Algebras I

Theory of Operator Algebras I

Author: Masamichi Takesaki

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 424

ISBN-13: 1461261880

DOWNLOAD EBOOK

Mathematics for infinite dimensional objects is becoming more and more important today both in theory and application. Rings of operators, renamed von Neumann algebras by J. Dixmier, were first introduced by J. von Neumann fifty years ago, 1929, in [254] with his grand aim of giving a sound founda tion to mathematical sciences of infinite nature. J. von Neumann and his collaborator F. J. Murray laid down the foundation for this new field of mathematics, operator algebras, in a series of papers, [240], [241], [242], [257] and [259], during the period of the 1930s and early in the 1940s. In the introduction to this series of investigations, they stated Their solution 1 {to the problems of understanding rings of operators) seems to be essential for the further advance of abstract operator theory in Hilbert space under several aspects. First, the formal calculus with operator-rings leads to them. Second, our attempts to generalize the theory of unitary group-representations essentially beyond their classical frame have always been blocked by the unsolved questions connected with these problems. Third, various aspects of the quantum mechanical formalism suggest strongly the elucidation of this subject. Fourth, the knowledge obtained in these investigations gives an approach to a class of abstract algebras without a finite basis, which seems to differ essentially from all types hitherto investigated. Since then there has appeared a large volume of literature, and a great deal of progress has been achieved by many mathematicians.


Fundamentals of the Theory of Operator Algebras

Fundamentals of the Theory of Operator Algebras

Author: KADISON

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 599

ISBN-13: 1461229685

DOWNLOAD EBOOK

These volumes are companions to the treatise; "Fundamentals of the Theory of Operator Algebras," which appeared as Volume 100 - I and II in the series, Pure and Applied Mathematics, published by Academic Press in 1983 and 1986, respectively. As stated in the preface to those volumes, "Their primary goal is to teach the sub ject and lead the reader to the point where the vast recent research literature, both in the subject proper and in its many applications, becomes accessible." No attempt was made to be encyclopcedic; the choice of material was made from among the fundamentals of what may be called the "classical" theory of operator algebras. By way of supplementing the topics selected for presentation in "Fundamentals," a substantial list of exercises comprises the last section of each chapter. An equally important purpose of those exer cises is to develop "hand-on" skills in use ofthe techniques appearing in the text. As a consequence, each exercise was carefully designed to depend only on the material that precedes it, and separated into segments each of which is realistically capable of solution by an at tentive, diligent, well-motivated reader.


Modular Theory in Operator Algebras

Modular Theory in Operator Algebras

Author: Serban Stratila

Publisher: Cambridge University Press

Published: 2020-12-03

Total Pages: 461

ISBN-13: 1108489605

DOWNLOAD EBOOK

The first edition of this book appeared in 1981 as a direct continuation of Lectures of von Neumann Algebras (by Ş.V. Strătilă and L. Zsid ) and, until 2003, was the only comprehensive monograph on the subject. Addressing the students of mathematics and physics and researchers interested in operator algebras, noncommutative geometry and free probability, this revised edition covers the fundamentals and latest developments in the field of operator algebras. It discusses the group-measure space construction, Krieger factors, infinite tensor products of factors of type I (ITPFI factors) and construction of the type III_1 hyperfinite factor. It also studies the techniques necessary for continuous and discrete decomposition, duality theory for noncommutative groups, discrete decomposition of Connes, and Ocneanu's result on the actions of amenable groups. It contains a detailed consideration of groups of automorphisms and their spectral theory, and the theory of crossed products.


Fundamentals of the Theory of Operator Algebras: Elementary theory, an exercise approach

Fundamentals of the Theory of Operator Algebras: Elementary theory, an exercise approach

Author: Richard V. Kadison

Publisher: American Mathematical Soc.

Published: 1998

Total Pages: 292

ISBN-13: 9780821809907

DOWNLOAD EBOOK

This volume is the companion volume to Fundamentals of the Theory of Operator Algebras, Volume II - Advanced Theory (Graduate Studies in Mathematics series, Volume 16). The goal of the text proper is to teach the subject and lead readers to where the vast literature - in the subject specifically and in its many applications - becomes accessible. The choice of material was made from among the fundamentals of what may be called the classical theory of operator algebras. This volume contains the written solutions to the exercises in the Fundamentals of the Theory of Operator Algebras, Volume II - Advanced Theory.


Fundamentals of the Theory of Operator Algebras. Volume I

Fundamentals of the Theory of Operator Algebras. Volume I

Author: Richard V. Kadison

Publisher: American Mathematical Soc.

Published: 1997

Total Pages: 416

ISBN-13: 0821808192

DOWNLOAD EBOOK

The first volume of a two-volume text for an intermediate graduate course or for self-study for students familiar with basic measure theory and topology. Volume one covers linear spaces, Hilbert space and linear operators, Banach algebras, C*- algebra theory, and von Neumann algebra theory. The volumes are numbered consecutively but indexed separately. Volume one was originally published by Academic Press in 1983. Annotation copyrighted by Book News, Inc., Portland, OR


An Introduction to Operator Algebras

An Introduction to Operator Algebras

Author: Kehe Zhu

Publisher: CRC Press

Published: 1993-05-27

Total Pages: 172

ISBN-13: 9780849378751

DOWNLOAD EBOOK

An Introduction to Operator Algebras is a concise text/reference that focuses on the fundamental results in operator algebras. Results discussed include Gelfand's representation of commutative C*-algebras, the GNS construction, the spectral theorem, polar decomposition, von Neumann's double commutant theorem, Kaplansky's density theorem, the (continuous, Borel, and L8) functional calculus for normal operators, and type decomposition for von Neumann algebras. Exercises are provided after each chapter.


An Invitation to C*-Algebras

An Invitation to C*-Algebras

Author: W. Arveson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 117

ISBN-13: 1461263719

DOWNLOAD EBOOK

This book gives an introduction to C*-algebras and their representations on Hilbert spaces. We have tried to present only what we believe are the most basic ideas, as simply and concretely as we could. So whenever it is convenient (and it usually is), Hilbert spaces become separable and C*-algebras become GCR. This practice probably creates an impression that nothing of value is known about other C*-algebras. Of course that is not true. But insofar as representations are con cerned, we can point to the empirical fact that to this day no one has given a concrete parametric description of even the irreducible representations of any C*-algebra which is not GCR. Indeed, there is metamathematical evidence which strongly suggests that no one ever will (see the discussion at the end of Section 3. 4). Occasionally, when the idea behind the proof of a general theorem is exposed very clearly in a special case, we prove only the special case and relegate generalizations to the exercises. In effect, we have systematically eschewed the Bourbaki tradition. We have also tried to take into account the interests of a variety of readers. For example, the multiplicity theory for normal operators is contained in Sections 2. 1 and 2. 2. (it would be desirable but not necessary to include Section 1. 1 as well), whereas someone interested in Borel structures could read Chapter 3 separately. Chapter I could be used as a bare-bones introduction to C*-algebras. Sections 2.


A Short Course on Spectral Theory

A Short Course on Spectral Theory

Author: William Arveson

Publisher: Springer Science & Business Media

Published: 2001-11-09

Total Pages: 140

ISBN-13: 0387953000

DOWNLOAD EBOOK

This book presents the basic tools of modern analysis within the context of the fundamental problem of operator theory: to calculate spectra of specific operators on infinite dimensional spaces, especially operators on Hilbert spaces. The tools are diverse, and they provide the basis for more refined methods that allow one to approach problems that go well beyond the computation of spectra: the mathematical foundations of quantum physics, noncommutative K-theory, and the classification of simple C*-algebras being three areas of current research activity which require mastery of the material presented here.