"What the editors have managed to accomplish with Fundamentals of the Stem Cell Debate is very significant. The book is well-informed, sophisticated, and attends to the moral and scientific complexities of stem cell research, rather than sweeping them under the rug. This book encompasses the complexities without sacrificing the other main virtue of the collection: to definitively illuminate the debate for all."—Jason Scott Robert, author of Embryology, Epigenesis, & Evolution: Taking Development Seriously
First developed as an accessible abridgement of the successful Handbook of Stem Cells, Essentials of Stem Cell Biology serves the needs of the evolving population of scientists, researchers, practitioners and students that are embracing the latest advances in stem cells. Representing the combined effort of seven editors and more than 200 scholars and scientists whose pioneering work has defined our understanding of stem cells, this book combines the prerequisites for a general understanding of adult and embryonic stem cells with a presentation by the world's experts of the latest research information about specific organ systems. From basic biology/mechanisms, early development, ectoderm, mesoderm, endoderm, methods to application of stem cells to specific human diseases, regulation and ethics, and patient perspectives, no topic in the field of stem cells is left uncovered. - Selected for inclusion in Doody's Core Titles 2013, an essential collection development tool for health sciences libraries - Contributions by Nobel Laureates and leading international investigators - Includes two entirely new chapters devoted exclusively to induced pluripotent stem (iPS) cells written by the scientists who made the breakthrough - Edited by a world-renowned author and researcher to present a complete story of stem cells in research, in application, and as the subject of political debate - Presented in full color with glossary, highlighted terms, and bibliographic entries replacing references
This volume summarizes recent advances in research on mesenchymal cell populations in the bone marrow. It explores how mesenchymal cells create niches for immune cells in extramedullary organs and it discusses new concepts of lympho-hematopoietic microenvironments. Readers are introduced to the fundamentals of hematopoietic stem cells (HSCs) differentiation to all types of blood cells, including immune cells, in the bone marrow. The book highlights how this process is supported and regulated by the individual microenvironments of stem cells, termed niches. The identity of HSC niches has been subject to longstanding debates. Recent studies identified the population of mesenchymal stem cells as the major cellular component of niches, for hematopoietic stem and progenitor cells (HSPCs) and their candidate developmental origin. Furthermore, candidate cellular niches for immune cells in lymph nodes and adipose and connective tissues were identified. The authors of this volume focus on shared features between those and HSPC niche cells in the bone marrow. Covering latest research results, this book serves as fascinating read for researchers and clinicians in hematology and immunology.
Human reproductive cloning is an assisted reproductive technology that would be carried out with the goal of creating a newborn genetically identical to another human being. It is currently the subject of much debate around the world, involving a variety of ethical, religious, societal, scientific, and medical issues. Scientific and Medical Aspects of Human Reproductive Cloning considers the scientific and medical sides of this issue, plus ethical issues that pertain to human-subjects research. Based on experience with reproductive cloning in animals, the report concludes that human reproductive cloning would be dangerous for the woman, fetus, and newborn, and is likely to fail. The study panel did not address the issue of whether human reproductive cloning, even if it were found to be medically safe, would beâ€"or would not beâ€"acceptable to individuals or society.
This book is open access under a CC BY 4.0 license. This textbook, endorsed by the European Society for Blood and Marrow Transplantation (EBMT), provides adult and paediatric nurses with a full and informative guide covering all aspects of transplant nursing, from basic principles to advanced concepts. It takes the reader on a journey through the history of transplant nursing, including essential and progressive elements to help nurses improve their knowledge and benefit the patient experience, as well as a comprehensive introduction to research and auditing methods. This new volume specifically intended for nurses, complements the ESH-EBMT reference title, a popular educational resource originally developed in 2003 for physicians to accompany an annual training course also serving as an educational tool in its own right. This title is designed to develop the knowledge of nurses in transplantation. It is the first book of its kind specifically targeted at nurses in this specialist field and acknowledges the valuable contribution that nursing makes in this area. This volume presents information that is essential for the education of nurses new to transplantation, while also offering a valuable resource for more experienced nurses who wish to update their knowledge.
Stem cells are the focus of intense interest from a growing, multidisciplinary community of investigators with new tools for isolating and characterizing these elusive cell types. This volume, which features contributions from many of the world's leading laboratories, provides a uniquely broad and authoritative basis for understanding the biology of stem cells and the current excitement about their potential for clinical exploitation. It is an essential work of reference for investigators in embryology, hematology, and neurobiology, and their potential for clinical exploitation. It is an essential work of reference for investigators in embryology, hematology, and neurobiology, and their collaborators in the emerging field of regenerative medicine.
"Provides an understanding of the basic concepts in stem cell biology and addresses the politics, ethics, and challenges currently facing the field"--From publisher description.
"Fundamentals of Tissue Engineering and Regenerative Medicine" provides a complete overview of the state of the art in tissue engineering and regenerative medicine. Tissue engineering has grown tremendously during the past decade. Advances in genetic medicine and stem cell technology have significantly improved the potential to influence cell and tissue performance, and have recently expanded the field towards regenerative medicine. In recent years a number of approaches have been used routinely in daily clinical practice, others have been introduced in clinical studies, and multitudes are in the preclinical testing phase. Because of these developments, there is a need to provide comprehensive and detailed information for researchers and clinicians on this rapidly expanding field. This book offers, in a single volume, the prerequisites of a comprehensive understanding of tissue engineering and regenerative medicine. The book is conceptualized according to a didactic approach (general aspects: social, economic, and ethical considerations; basic biological aspects of regenerative medicine: stem cell medicine, biomolecules, genetic engineering; classic methods of tissue engineering: cell, tissue, organ culture; biotechnological issues: scaffolds; bioreactors, laboratory work; and an extended medical discipline oriented approach: review of clinical use in the various medical specialties). The content of the book, written in 68 chapters by the world’s leading research and clinical specialists in their discipline, represents therefore the recent intellect, experience, and state of this bio-medical field.
Stem Cell Manufacturing discusses the required technologies that enable the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic environment as therapeutics, while concurrently achieving control, reproducibility, automation, validation, and safety of the process and the product. The advent of stem cell research unveiled the therapeutic potential of stem cells and their derivatives and increased the awareness of the public and scientific community for the topic. The successful manufacturing of stem cells and their derivatives is expected to have a positive impact in the society since it will contribute to widen the offer of therapeutic solutions to the patients. Fully defined cellular products can be used to restore the structure and function of damaged tissues and organs and to develop stem cell-based cellular therapies for the treatment of cancer and hematological disorders, autoimmune and other inflammatory diseases and genetic disorders. - Presents the first 'Flowchart' of stem cell manufacturing enabling easy understanding of the various processes in a sequential and coherent manner - Covers all bioprocess technologies required for the transfer of the bench findings to the clinic including the process components: cell signals, bioreactors, modeling, automation, safety, etc. - Presents comprehensive coverage of a true multidisciplinary topic by bringing together specialists in their particular area - Provides the basics of the processes and identifies the issues to be resolved for large scale cell culture by the bioengineer - Addresses the critical need in bioprocessing for the successful delivery of stem cell technology to the market place by involving professional engineers in sections of the book