Fundamentals of Supramolecular Chirality is a critical description of the start and advancement of supramolecular chirality. This book focuses on the noncovalent approach with some supplementary examples of covalent supramolecular chirality.This contribution to supramolecular chirality is not intended to be a mere catalogue and description of the work done. It also traces a philosophical path following the development and possible perspectives of this topic, providing not a review but a critical examination of the field.
'Chirality in Transition Metal Chemistry' is an essential introduction to this increasingly important field for students and researchers in inorganic chemistry.
Supramolecular chemistry deals with the organisation of molecules into defined assemblies using non-covalent interactions, including weaker and reversible interactions such as hydrogen bonds, and metal-ligand interactions. The aspect of stereochemistry within such chemical architectures, and in particular chirality, is of special interest as it impacts on considerations of molecular recognition, the development of functional materials, the vexed question of homochirality, nanoscale effects of interactions at interfaces, biocatalysis and enzymatic catalysis, and applications in organic synthesis. Chirality in Supramolecular Assemblies addresses many of these aspects, presenting a broad overview of this important and rapidly developing interdisciplinary field. Topics covered include: Origins of molecular and topological chirality Homochirogenesis Chirality in crystallinity Host-guest behavior Chiral influences in functional materials Chirality in network solids and coordination solids Aspects of chirality at interfaces Chirality in organic assemblies Chirality related to biocatalysis and enzymes in organic synthesis. This book is a valuable reference for researchers in the molecular sciences, materials science and biological science working with chiral supramolecular systems. It provides summaries and special insights by acknowledged international experts in the various fields.
Supramolecular chemistry and nanochemistry are two strongly interrelated cutting edge frontiers in research in the chemical sciences. The results of recent work in the area are now an increasing part of modern degree courses and hugely important to researchers. Core Concepts in Supramolecular Chemistry and Nanochemistry clearly outlines the fundamentals that underlie supramolecular chemistry and nanochemistry and takes an umbrella view of the whole area. This concise textbook traces the fascinating modern practice of the chemistry of the non-covalent bond from its fundamental origins through to it expression in the emergence of nanochemistry. Fusing synthetic materials and supramolecular chemistry with crystal engineering and the emerging principles of nanotechnology, the book is an ideal introduction to current chemical thought for researchers and a superb resource for students entering these exciting areas for the first time. The book builds from first principles rather than adopting a review style and includes key references to guide the reader through influential work. supplementary website featuring powerpoint slides of the figures in the book further references in each chapter builds from first principles rather than adopting a review style includes chapter on nanochemistry clear diagrams to highlight basic principles
This book details chiroptical spectroscopic methods: electronic circular dichroism (ECD), optical rotatory dispersion (ORD), vibrational circular dichroism (VCD), and vibrational Raman optical activity (VROA). For each technique, the text presents experimental methods for measurements and theoretical methods for analyzing the experimental data. It also includes a set of experiments that can be adopted for undergraduate teaching laboratories. Each chapter is written in an easy-to-follow format for novice readers, with necessary theoretical formalism in appendices for advanced readers.
Advances in the Chemistry and Physics of Materials is a compilation of topics on the recent developments in the areas of Materials Science.Materials Science has been a subject of major interest which has garnered significant attention over the years. Chemists and physicists have contributed extensively to this frontier research area and their synergistic efforts have led to the discovery of many new, exciting materials involving novel functions. In the light of the growing importance of the field of Materials Science, and owing to the fact that it is a subject that holds a lot of promise, internationally renowned Materials Chemist Prof. C.N.R Rao along with his colleagues at the School of Advanced Materials, at JNCASR, have compiled the contents of this book to highlight and showcase the emerging trends in materials science.It touches upon topics spanning over nanomaterials and various other classes of energy materials for harvesting, storage and conversion. The relatively new and exciting range of materials such as supramolecular, soft and biomaterials have been introduced and elucidated, in the book. Special emphasis has been laid on the synthesis, phenomena and characterization of these kinds of materials. Theoretical and Computational Chemistry has played an important role in the growth of Materials Science as a discipline, and the book covers a special topical session on the theoretical efforts in materials research.The book, packed with theory and practical aspects in a crisp and concise manner, aims to take the reader on an intense scientific expedition. The compilation provides an insight into the chemistry and physics of materials and presents up-to-date status reports which would, undoubtedly, be useful to practitioners, teachers and students.
Tin chemistry retains a place in contemporary science as an important element owing to its wide range of applications. New and exciting research is being generated on an annual basis from all parts of the world – the study of tin and its compounds attracts considerable interest from a range of perspectives such as organic synthesis, medicine, materials chemistry, catalysis and environment. Tin Chemistry – Fundamentals, Frontiers and Applications collects, in one comprehensive volume, authoritative and concise snapshots of modern tin chemistry in a full range of applications. Over forty of the leading tin chemistry experts have contributed reviews in six themes: fundamentals in tin chemistry materials chemistry and structural chemistry of tin compounds medicinal and biocidal applications of tin compounds tin in the environment tin in organic synthesis tin in catalysis Tin Chemistry – Fundamentals, Frontiers and Applications is an essential overview of modern perspectives on this important element for the specialist and non-specialist alike. It will promote cross-disciplinary interactions and at the same time be an essential teaching resource for advanced university classes.
Amplification of Chirality presents critical reviews of the present position and future trends in modern chemical research. The book contains short and concise reports on chemistry. Each is written by the world renowned experts. Still valid and useful after 5 or 10 years, more information as well as the electronic version of the whole content available at: springerlink.com.
In spite of important advances in asymmetric synthesis, chiral compounds cannot all be obtained in a pure state by asymmetric synthesis. As a result, enantiomer separation remains an important technique for obtaining optically active materials. Although asymmetric synthesis is a once-only procedure, an enantiomer separation process can be repeated until the optically pure sample is obtained. This book discusses several new enantiomer separation methods using modern techniques developed by experts in the field. These methods consist mainly of the following three types: 1) Enantiomer separation by inclusion complexation with a chiral host compound 2) Enantiomer separation using biological methods 3) Enantiomer separation by HPLC chromatography using a column containing a chiral stationary phase. Separation of a racemic compound has been called “optical resolution” or simply “resolution”. Nowadays, the descriptions “enantiomer resolution” or “enantiomer separation” are also commonly used. Accordingly, “Enantiomer Separation” is used in the title of this book. The editor and all chapter contributors hope that this book is helpful for scientists and engineers working in this field.