With the proliferation of mobile devices and hearing devices, including hearing aids and cochlear implants, there is a growing and pressing need to design algorithms that can improve speech intelligibility without sacrificing quality. Responding to this need, Speech Enhancement: Theory and Practice, Second Edition introduces readers to the basic pr
The enormous advances in digital signal processing (DSP) technology have contributed to the wide dissemination and success of speech communication devices – be it GSM and UMTS mobile telephones, digital hearing aids, or human-machine interfaces. Digital speech transmission techniques play an important role in these applications, all the more because high quality speech transmission remains essential in all current and next generation communication networks. Enhancement, coding and error concealment techniques improve the transmitted speech signal at all stages of the transmission chain, from the acoustic front-end to the sound reproduction at the receiver. Advanced speech processing algorithms help to mitigate a number of physical and technological limitations such as background noise, bandwidth restrictions, shortage of radio frequencies, and transmission errors. Digital Speech Transmission provides a single-source, comprehensive guide to the fundamental issues, algorithms, standards, and trends in speech signal processing and speech communication technology. The authors give a solid, accessible overview of fundamentals of speech signal processing speech coding, including new speech coders for GSM and UMTS error concealment by soft decoding artificial bandwidth extension of speech signals single and multi-channel noise reduction acoustic echo cancellation This text is an invaluable resource for engineers, researchers, academics, and graduate students in the areas of communications, electrical engineering, and information technology.
A comprehensive guide to the theory and practice of signal enhancement and array signal processing, including matlab codes, exercises and instructor and solution manuals Systematically introduces the fundamental principles, theory and applications of signal enhancement and array signal processing in an accessible manner Offers an updated and relevant treatment of array signal processing with rigor and concision Features a companion website that includes presentation files with lecture notes, homework exercises, course projects, solution manuals, instructor manuals, and Matlab codes for the examples in the book
Provides the reader with a practical introduction to the wide range of important concepts that comprise the field of digital speech processing. Students of speech research and researchers working in the field can use this as a reference guide.
An emerging technology, Speaker Recognition is becoming well-known for providing voice authentication over the telephone for helpdesks, call centres and other enterprise businesses for business process automation. "Fundamentals of Speaker Recognition" introduces Speaker Identification, Speaker Verification, Speaker (Audio Event) Classification, Speaker Detection, Speaker Tracking and more. The technical problems are rigorously defined, and a complete picture is made of the relevance of the discussed algorithms and their usage in building a comprehensive Speaker Recognition System. Designed as a textbook with examples and exercises at the end of each chapter, "Fundamentals of Speaker Recognition" is suitable for advanced-level students in computer science and engineering, concentrating on biometrics, speech recognition, pattern recognition, signal processing and, specifically, speaker recognition. It is also a valuable reference for developers of commercial technology and for speech scientists. Please click on the link under "Additional Information" to view supplemental information including the Table of Contents and Index.
Essential principles, practical examples, current applications, and leading-edge research. In this book, Thomas F. Quatieri presents the field's most intensive, up-to-date tutorial and reference on discrete-time speech signal processing. Building on his MIT graduate course, he introduces key principles, essential applications, and state-of-the-art research, and he identifies limitations that point the way to new research opportunities. Quatieri provides an excellent balance of theory and application, beginning with a complete framework for understanding discrete-time speech signal processing. Along the way, he presents important advances never before covered in a speech signal processing text book, including sinusoidal speech processing, advanced time-frequency analysis, and nonlinear aeroacoustic speech production modeling. Coverage includes: Speech production and speech perception: a dual view Crucial distinctions between stochastic and deterministic problems Pole-zero speech models Homomorphic signal processing Short-time Fourier transform analysis/synthesis Filter-bank and wavelet analysis/synthesis Nonlinear measurement and modeling techniques The book's in-depth applications coverage includes speech coding, enhancement, and modification; speaker recognition; noise reduction; signal restoration; dynamic range compression, and more. Principles of Discrete-Time Speech Processing also contains an exceptionally complete series of examples and Matlab exercises, all carefully integrated into the book's coverage of theory and applications.
We live in a noisy world! In all applications (telecommunications, hands-free communications, recording, human-machine interfaces, etc.) that require at least one microphone, the signal of interest is usually contaminated by noise and reverberation. As a result, the microphone signal has to be "cleaned" with digital signal processing tools before it is played out, transmitted, or stored. This book is about speech enhancement. Different well-known and state-of-the-art methods for noise reduction, with one or multiple microphones, are discussed. By speech enhancement, we mean not only noise reduction but also dereverberation and separation of independent signals. These topics are also covered in this book. However, the general emphasis is on noise reduction because of the large number of applications that can benefit from this technology. The goal of this book is to provide a strong reference for researchers, engineers, and graduate students who are interested in the problem of signal and speech enhancement. To do so, we invited well-known experts to contribute chapters covering the state of the art in this focused field. TOC:Introduction.- Study of the Wiener Filter for Noise Reduction.- Statistical Methods for the Enhancement of Noisy Speech.- Single- und Multi-Microphone Spectral Amplitude Estimation Using a Super-Gaussian Speech Model.- From Volatility Modeling of Financial Time-Series to Stochastic Modeling and Enhancement of Speech Signals.- Single-Microphone Noise Suppression for 3G Handsets Based on Weighted Noise Estimation.- Signal Subspace Techniques for Speech Enhancement.- Speech Enhancement: Application of the Kalman Filter in the Estimate-Maximize (EM) Framework.- Speech Distortion Weighted Multichannel Wiener Filtering Techniques for Noise Reduction.- Adpative Microphone Arrays Employing Spatial Quadratic Soft Constraints and Spectral Shaping.- Single-Microphone Blind Dereverberation.- Separation and Dereverberation of Speech Signals with Multiple Microphones.- Frequency-Domain Blind Source Separation.- Subband Based Blind Source Separation.- Real-Time Blind Source Separation for Moving Speech Signals.- Separation of Speech by Computational Auditory Scene Analysis
A complete overview of distant automatic speech recognition The performance of conventional Automatic Speech Recognition (ASR) systems degrades dramatically as soon as the microphone is moved away from the mouth of the speaker. This is due to a broad variety of effects such as background noise, overlapping speech from other speakers, and reverberation. While traditional ASR systems underperform for speech captured with far-field sensors, there are a number of novel techniques within the recognition system as well as techniques developed in other areas of signal processing that can mitigate the deleterious effects of noise and reverberation, as well as separating speech from overlapping speakers. Distant Speech Recognitionpresents a contemporary and comprehensive description of both theoretic abstraction and practical issues inherent in the distant ASR problem. Key Features: Covers the entire topic of distant ASR and offers practical solutions to overcome the problems related to it Provides documentation and sample scripts to enable readers to construct state-of-the-art distant speech recognition systems Gives relevant background information in acoustics and filter techniques, Explains the extraction and enhancement of classification relevant speech features Describes maximum likelihood as well as discriminative parameter estimation, and maximum likelihood normalization techniques Discusses the use of multi-microphone configurations for speaker tracking and channel combination Presents several applications of the methods and technologies described in this book Accompanying website with open source software and tools to construct state-of-the-art distant speech recognition systems This reference will be an invaluable resource for researchers, developers, engineers and other professionals, as well as advanced students in speech technology, signal processing, acoustics, statistics and artificial intelligence fields.
This is the first book to provide a single complete reference on microphone arrays. Top researchers in this field contributed articles documenting the current state of the art in microphone array research, development and technological application.