The study and application of spatial information systems have been developed primarily from the use of computers in the geosciences. These systems have the principle functions of capturing, storing, representing, manipulating, and displaying data in 2-D and 3-D worlds. This book approaches its subject from the perspectives of informatics and geography, presenting methods of conceptual modeling developed in computer science that provide valuable aids for resolving spatial problems. This book is an essential textbook for both students and practitioners. It is indispensable for academic geographers, computer scientists, and the GIS professional. Serves as the first comprehensive textbook on the field of Spatial Information Systems (also known as Geographic Information Systems) Contains extensive illustrations Presents numerous detailed examples
This book explains the concept of spatial data quality, a key theory for minimizing the risks of data misuse in a specific decision-making context. Drawing together chapters written by authors who are specialists in their particular field, it provides both the data producer and the data user perspectives on how to evaluate the quality of vector or raster data which are both produced and used. It also covers the key concepts in this field, such as: how to describe the quality of vector or raster data; how to enhance this quality; how to evaluate and document it, using methods such as metadata; how to communicate it to users; and how to relate it with the decision-making process. Also included is a Foreword written by Professor Michael F. Goodchild.
Geographic information systems (GIS)--a central repository of geographic data collected from various sources, including satellites and GPS--is emerging as one of the most intriguing and promising high-tech fields. This easy-to-understand resource provides technical and nontechnical professionals, regardless of their background, with an accessible and practical guide to important GIS know-how.
This textbook provides comprehensive and in-depth explanations of all topics related to spatial analysis and spatiotemporal simulation, including how spatial data are acquired, represented digitally, and spatially aggregated. Also features the nature of space and how it is measured. Descriptive, explanatory, and inferential analyses are covered for point, line, and area data. It captures the latest developments in spatiotemporal simulation with cellular automata and agent-based modelling, and through practical examples discusses how spatial analysis and modelling can be implemented in different computing platforms. A much-needed textbook for a course at upper undergraduate and postgraduate levels.
The second edition of this well-received text on principles of geographic information systems (GIS) continues the author's style of "straight talk" in its presentation. The writing is accessible and easy to follow. Unlike most other texts, this book covers GIS design and modeling, reflecting the author's belief that modeling and analysis are at the heart of GIS. This enables students to understand how to use a GIS and what it does.
With GIS technology increasingly available to a wider audience on devices from apps on smartphones to satnavs in cars, many people routinely use spatial data in a way which used to be the preserve of GIS specialists. However spatial data is stored and analyzed on a computer still tends to be described in academic texts and articles which require specialist knowledge or some training in computer science. Developed to introduce computer science literature to geography students, GIS Fundamentals, Second Edition provides an accessible examination of the underlying principles for anyone with no formal training in computer science. See What’s New in the Second Edition: Coverage of the use of spatial data on the Internet Chapters on databases and on searching large databases for spatial queries Improved coverage on route-finding Improved coverage of heuristic approaches to solving real-world spatial problems International standards for spatial data The book begins with a brief but detailed introduction to how computers work and how they are programmed, giving anyone with no previous computer science background a foundation to understand the remainder of the book. As with all parts of the book there are also suggestions for further sources of reading. The book then describes the ways in which vector and raster data can be stored and how algorithms are designed to perform fundamental operations such as detecting where lines intersect. From these simple beginnings the book moves into the more complex structures used for handling surfaces and networks and contains a detailed account of what it takes to determine the shortest route between two places on a network. The final sections of the book review problems, such as the "Travelling Salesman" problem, which are so complex that it is not known whether an optimum solution exists. Using clear, concise language, but without sacrificing technical rigour, the book gives readers an understanding of what it takes to produce systems which allow them to find out where to make their next purchase and how to drive to the right place to collect it.
This book is designed to help students and researchers understand the latest research and development trends in the domain of geospatial information and communication (GeoICT) technologies. Accordingly, it covers the fundamentals of geospatial information systems, spatial positioning technologies, and networking and mobile communications, with a focus on OGC and OGC standards, Internet GIS, and location-based services. Particular emphasis is placed on introducing GeoICT as an integrated technology that effectively bridges various information-technology domains.