Fundamentals of Scientific Mathematics

Fundamentals of Scientific Mathematics

Author: George E. Owen

Publisher: Courier Corporation

Published: 2003-01-01

Total Pages: 308

ISBN-13: 9780486428086

DOWNLOAD EBOOK

Rewarding undergraduate text, derived from an experimental program in teaching mathematics at the secondary-school level. This text provides a good introduction to geometry and matrices, vector algebra, analytic geometry, functions, and differential and integral calculus. "...solid modern mathematical content..." — American Scientist. Over 200 figures. 1964 edition.


Fundamentals of Scientific Computing

Fundamentals of Scientific Computing

Author: Bertil Gustafsson

Publisher: Springer Science & Business Media

Published: 2011-06-11

Total Pages: 317

ISBN-13: 3642194958

DOWNLOAD EBOOK

The book of nature is written in the language of mathematics -- Galileo Galilei How is it possible to predict weather patterns for tomorrow, with access solely to today’s weather data? And how is it possible to predict the aerodynamic behavior of an aircraft that has yet to be built? The answer is computer simulations based on mathematical models – sets of equations – that describe the underlying physical properties. However, these equations are usually much too complicated to solve, either by the smartest mathematician or the largest supercomputer. This problem is overcome by constructing an approximation: a numerical model with a simpler structure can be translated into a program that tells the computer how to carry out the simulation. This book conveys the fundamentals of mathematical models, numerical methods and algorithms. Opening with a tutorial on mathematical models and analysis, it proceeds to introduce the most important classes of numerical methods, with finite element, finite difference and spectral methods as central tools. The concluding section describes applications in physics and engineering, including wave propagation, heat conduction and fluid dynamics. Also covered are the principles of computers and programming, including MATLAB®.


Fundamentals of Scientific Mathematics

Fundamentals of Scientific Mathematics

Author: George E. Owen

Publisher: Courier Corporation

Published: 2012-12-03

Total Pages: 308

ISBN-13: 0486164586

DOWNLOAD EBOOK

Offering undergraduates a solid mathematical background (and functioning equally well for independent study), this rewarding, beautifully illustrated text covers geometry and matrices, vector algebra, analytic geometry, functions, and differential and integral calculus. 1961 edition.


Fundamentals of Numerical Mathematics for Physicists and Engineers

Fundamentals of Numerical Mathematics for Physicists and Engineers

Author: Alvaro Meseguer

Publisher: John Wiley & Sons

Published: 2020-06-16

Total Pages: 400

ISBN-13: 1119425670

DOWNLOAD EBOOK

Introduces the fundamentals of numerical mathematics and illustrates its applications to a wide variety of disciplines in physics and engineering Applying numerical mathematics to solve scientific problems, this book helps readers understand the mathematical and algorithmic elements that lie beneath numerical and computational methodologies in order to determine the suitability of certain techniques for solving a given problem. It also contains examples related to problems arising in classical mechanics, thermodynamics, electricity, and quantum physics. Fundamentals of Numerical Mathematics for Physicists and Engineers is presented in two parts. Part I addresses the root finding of univariate transcendental equations, polynomial interpolation, numerical differentiation, and numerical integration. Part II examines slightly more advanced topics such as introductory numerical linear algebra, parameter dependent systems of nonlinear equations, numerical Fourier analysis, and ordinary differential equations (initial value problems and univariate boundary value problems). Chapters cover: Newton’s method, Lebesgue constants, conditioning, barycentric interpolatory formula, Clenshaw-Curtis quadrature, GMRES matrix-free Krylov linear solvers, homotopy (numerical continuation), differentiation matrices for boundary value problems, Runge-Kutta and linear multistep formulas for initial value problems. Each section concludes with Matlab hands-on computer practicals and problem and exercise sets. This book: Provides a modern perspective of numerical mathematics by introducing top-notch techniques currently used by numerical analysts Contains two parts, each of which has been designed as a one-semester course Includes computational practicals in Matlab (with solutions) at the end of each section for the instructor to monitor the student's progress through potential exams or short projects Contains problem and exercise sets (also with solutions) at the end of each section Fundamentals of Numerical Mathematics for Physicists and Engineers is an excellent book for advanced undergraduate or graduate students in physics, mathematics, or engineering. It will also benefit students in other scientific fields in which numerical methods may be required such as chemistry or biology.


Fundamentals of Advanced Mathematics 1

Fundamentals of Advanced Mathematics 1

Author: Henri Bourles

Publisher: Elsevier

Published: 2017-07-10

Total Pages: 270

ISBN-13: 0081021127

DOWNLOAD EBOOK

This precis, comprised of three volumes, of which this book is the first, exposes the mathematical elements which make up the foundations of a number of contemporary scientific methods: modern theory on systems, physics and engineering. This first volume focuses primarily on algebraic questions: categories and functors, groups, rings, modules and algebra. Notions are introduced in a general framework and then studied in the context of commutative and homological algebra; their application in algebraic topology and geometry is therefore developed. These notions play an essential role in algebraic analysis (analytico-algebraic systems theory of ordinary or partial linear differential equations). The book concludes with a study of modules over the main types of rings, the rational canonical form of matrices, the (commutative) theory of elemental divisors and their application in systems of linear differential equations with constant coefficients. - Part of the New Mathematical Methods, Systems, and Applications series - Presents the notions, results, and proofs necessary to understand and master the various topics - Provides a unified notation, making the task easier for the reader. - Includes several summaries of mathematics for engineers


Fundamentals of Advanced Mathematics V3

Fundamentals of Advanced Mathematics V3

Author: Henri Bourles

Publisher: Elsevier

Published: 2019-10-11

Total Pages: 428

ISBN-13: 0081023863

DOWNLOAD EBOOK

Fundamentals of Advanced Mathematics, Volume Three, begins with the study of differential and analytic infinite-dimensional manifolds, then progresses into fibered bundles, in particular, tangent and cotangent bundles. In addition, subjects covered include the tensor calculus on manifolds, differential and integral calculus on manifolds (general Stokes formula, integral curves and manifolds), an analysis on Lie groups, the Haar measure, the convolution of functions and distributions, and the harmonic analysis over a Lie group. Finally, the theory of connections is (linear connections, principal connections, and Cartan connections) covered, as is the calculus of variations in Lagrangian and Hamiltonian formulations. This volume is the prerequisite to the analytic and geometric study of nonlinear systems. - Includes sections on differential and analytic manifolds, vector bundles, tensors, Lie derivatives, applications to algebraic topology, and more - Presents an ideal prerequisite resource on the analytic and geometric study of nonlinear systems - Provides theory as well as practical information


Foundations of Science Mathematics

Foundations of Science Mathematics

Author: Deviderjit Singh Sivia

Publisher: OUP Oxford

Published: 1999-06-24

Total Pages: 98

ISBN-13: 9780198504283

DOWNLOAD EBOOK

This text spans a large range of mathematics, from basic algebra to calculus and Fourier transforms. Its tutorial style bridges the gap between school and university while its conciseness provides a useful reference for the professional.


Basic Training in Mathematics

Basic Training in Mathematics

Author: R. Shankar

Publisher: Springer

Published: 2013-12-20

Total Pages: 371

ISBN-13: 1489967982

DOWNLOAD EBOOK

Based on course material used by the author at Yale University, this practical text addresses the widening gap found between the mathematics required for upper-level courses in the physical sciences and the knowledge of incoming students. This superb book offers students an excellent opportunity to strengthen their mathematical skills by solving various problems in differential calculus. By covering material in its simplest form, students can look forward to a smooth entry into any course in the physical sciences.


Fundamentals of Teaching Mathematics at University Level

Fundamentals of Teaching Mathematics at University Level

Author: Benjamin Baumslag

Publisher: World Scientific Publishing Company

Published: 2000-01-01

Total Pages: 240

ISBN-13: 9781860942143

DOWNLOAD EBOOK

This unique book presents a personal and global approach to teaching mathematics at university level. It is impressively broad in its scope, and thought-provoking in its advice. The author writes with a love of his subject and the benefit of a long and varied career. He compares and contrasts various educational systems and philosophies. Furthermore, by constantly drawing on his own experiences and those of his colleagues, he offers useful suggestions on how teachers can respond to the problems they face. This book will interest educationalists, policy advisers, administrators, lecturers, and instructors, of lecturers.