"This book is fast becoming the standard text in its field", wrote a reviewer in the Journal of Canadian Petroleum Technology soon after the first appearance of Dake's book. This prediction quickly came true: it has become the standard text and has been reprinted many times. The author's aim - to provide students and teachers with a coherent account of the basic physics of reservoir engineering - has been most successfully achieved. No prior knowledge of reservoir engineering is necessary. The material is dealt with in a concise, unified and applied manner, and only the simplest and most straightforward mathematical techniques are used. This low-priced paperback edition will continue to be an invaluable teaching aid for years to come.
Fundamentals of Applied Reservoir Engineering introduces early career reservoir engineers and those in other oil and gas disciplines to the fundamentals of reservoir engineering. Given that modern reservoir engineering is largely centered on numerical computer simulation and that reservoir engineers in the industry will likely spend much of their professional career building and running such simulators, the book aims to encourage the use of simulated models in an appropriate way and exercising good engineering judgment to start the process for any field by using all available methods, both modern simulators and simple numerical models, to gain an understanding of the basic 'dynamics' of the reservoir –namely what are the major factors that will determine its performance. With the valuable addition of questions and exercises, including online spreadsheets to utilize day-to-day application and bring together the basics of reservoir engineering, coupled with petroleum economics and appraisal and development optimization, Fundamentals of Applied Reservoir Engineering will be an invaluable reference to the industry professional who wishes to understand how reservoirs fundamentally work and to how a reservoir engineer starts the performance process. - Covers reservoir appraisal, economics, development planning, and optimization to assist reservoir engineers in their decision-making. - Provides appendices on enhanced oil recovery, gas well testing, basic fluid thermodynamics, and mathematical operators to enhance comprehension of the book's main topics. - Offers online spreadsheets covering well test analysis, material balance, field aggregation and economic indicators to help today's engineer apply reservoir concepts to practical field data applications. - Includes coverage on unconventional resources and heavy oil making it relevant for today's worldwide reservoir activity.
Reservoir Engineering focuses on the fundamental concepts related to the development of conventional and unconventional reservoirs and how these concepts are applied in the oil and gas industry to meet both economic and technical challenges. Written in easy to understand language, the book provides valuable information regarding present-day tools, techniques, and technologies and explains best practices on reservoir management and recovery approaches. Various reservoir workflow diagrams presented in the book provide a clear direction to meet the challenges of the profession. As most reservoir engineering decisions are based on reservoir simulation, a chapter is devoted to introduce the topic in lucid fashion. The addition of practical field case studies make Reservoir Engineering a valuable resource for reservoir engineers and other professionals in helping them implement a comprehensive plan to produce oil and gas based on reservoir modeling and economic analysis, execute a development plan, conduct reservoir surveillance on a continuous basis, evaluate reservoir performance, and apply corrective actions as necessary. - Connects key reservoir fundamentals to modern engineering applications - Bridges the conventional methods to the unconventional, showing the differences between the two processes - Offers field case studies and workflow diagrams to help the reservoir professional and student develop and sharpen management skills for both conventional and unconventional reservoirs
This book wxplains the fundamentals of reservoir engineering and their practical application in conducting a comprehensive field study.Two new chapters have been included in this second edition: chapter 14 and 15.
This book provides a clear and basic understanding of the concept of reservoir engineering to professionals and students in the oil and gas industry. The content contains detailed explanations of key theoretic and mathematical concepts and provides readers with the logical ability to approach the various challenges encountered in daily reservoir/field operations for effective reservoir management. Chapters are fully illustrated and contain numerous calculations involving the estimation of hydrocarbon volume in-place, current and abandonment reserves, aquifer models and properties for a particular reservoir/field, the type of energy in the system and evaluation of the strength of the aquifer if present. The book is written in oil field units with detailed solved examples and exercises to enhance practical application. It is useful as a professional reference and for students who are taking applied and advanced reservoir engineering courses in reservoir simulation, enhanced oil recovery and well test analysis.
This revised edition of the bestselling Practice of Reservoir Engineering has been written for those in the oil industry requiring a working knowledge of how the complex subject of hydrocarbon reservoir engineering can be applied in the field in a practical manner. Containing additions and corrections to the first edition, the book is a simple statement of how to do the job and is particularly suitable for reservoir/production engineers as well as those associated with hydrocarbon recovery.This practical book approaches the basic limitations of reservoir engineering with the basic tenet of science: Occam's Razor, which applies to reservoir engineering to a greater extent than for most physical sciences - if there are two ways to account for a physical phenomenon, it is the simpler that is the more useful. Therefore, simplicity is the theme of this volume.Reservoir and production engineers, geoscientists, petrophysicists, and those involved in the management of oil and gas fields will want this edition.
In the modem language of reservoir engineering by reservoir description is understood the totality of basic local information concerning the reservoir rock and fluids which by various procedures are extrapolated over the entire reservoir. Fracture detection, evaluation and processing is another essential step in the process of fractured reservoir description. In chapter 2, all parameters related to fracture density and fracture intensity, together with various procedures of data processing are discussed in detail. After a number of field examples, developed in Chap. 3, the main objective remains the quantitative evaluation of physical properties. This is done in Chap. 4, where the evaluation of fractures porosity and permeability, their correlation and the equivalent ideal geometrical models versus those parameters are discussed in great detail. Special rock properties such as capillary pressure and relative permeability are reexamined in the light of a double-porosity reservoir rock. In order to complete the results obtained by direct measurements on rock samples, Chap. 5 examines fracturing through indirect measurements from various logging results. The entire material contained in these five chapters defines the basic physical parameters and indicates procedures for their evaluation which may be used further in the description of fractured reservoirs.
This book explains the basic technologies, concepts, approaches, and terms used in relation to reservoir rocks. Accessible to engineers in varying roles, it provides the tools necessary for building reservoir characterization and simulation models that improve resource definition and recovery, even in complex depositional environments. The book is enriched with numerous examples from a wide variety of applications, to help readers understand the topics. It also describes in detail the key relationships between the different rock properties and their variables. As such, it is of interest to researchers, engineers, lab technicians, and postgraduate students in the field of petroleum engineering.
The use of numerical reservoir simulation with high-speed electronic computers has gained wide acceptance throughout the petroleum industry for making engineering studies of a wide variety of oil and gas reservoirs throughout the world. These reservoir simulators have been designed for use by reservoir engineers who possess little or no background in the numerical mathematics upon which they are based. In spite of the efforts to improve numerical methods to make reservoir simulators as reliable, efficient, and automatic as possible, the user of a simulator is faced with a myriad of decisions that have nothing to do with the problem to be solved. This book combines a review of some basic reservoir mechanics with the derivation of the differential equations that reservoir simulators are designed to solve.