Fundamentals of Laser Optoelectronics

Fundamentals of Laser Optoelectronics

Author: S. L. Chin

Publisher: World Scientific

Published: 1989

Total Pages: 376

ISBN-13: 9789810200732

DOWNLOAD EBOOK

This book is based on a course given by the author to third and fourth year undergraduate students from physics, engineering physics and electrical engineering. The purpose is to introduce and explain some of the fundamental principles underlying laser beam control in optoelectronics, especially those in relation to optical anisotropy which is at the heart of many optical devices. The contents of the book are scattered in many sources and there seems to be no single source available at the undergraduate level. That is why the present book is written. The book attempts to give the reader a good background needed for working in a laser, optoelectronic or photonic laboratory so that the use of equipment and the control of laser beams can be mastered without difficulty.


Fundamentals of Guided-Wave Optoelectronic Devices

Fundamentals of Guided-Wave Optoelectronic Devices

Author: William S. C. Chang

Publisher: Cambridge University Press

Published: 2010

Total Pages: 213

ISBN-13: 0521868238

DOWNLOAD EBOOK

Uniquely combines both the optical and electrical properties of guided-wave optoelectronic devices, providing key concepts and practical analytical techniques.


Semiconductor Optoelectronic Devices

Semiconductor Optoelectronic Devices

Author: Pallab Bhattacharya

Publisher:

Published: 1997

Total Pages: 613

ISBN-13: 9780134956565

DOWNLOAD EBOOK

The first true introduction to semiconductor optoelectronic devices, this book provides an accessible, well-organized overview of optoelectric devices that emphasizes basic principles.Coverage begins with an optional review of key concepts—such as properties of compound semiconductor, quantum mechanics, semiconductor statistics, carrier transport properties, optical processes, and junction theory—then progress gradually through more advanced topics. The Second Edition has been both updated and expanded to include the recent developments in the field.


Lasers and Optoelectronics

Lasers and Optoelectronics

Author: Anil K. Maini

Publisher: John Wiley & Sons

Published: 2013-08-05

Total Pages: 771

ISBN-13: 1118688961

DOWNLOAD EBOOK

With emphasis on the physical and engineering principles, this book provides a comprehensive and highly accessible treatment of modern lasers and optoelectronics. Divided into four parts, it explains laser fundamentals, types of lasers, laser electronics & optoelectronics, and laser applications, covering each of the topics in their entirety, from basic fundamentals to advanced concepts. Key features include: exploration of technological and application-related aspects of lasers and optoelectronics, detailing both existing and emerging applications in industry, medical diagnostics and therapeutics, scientific studies and Defence. simple explanation of the concepts and essential information on electronics and circuitry related to laser systems illustration of numerous solved and unsolved problems, practical examples, chapter summaries, self-evaluation exercises, and a comprehensive list of references for further reading This volume is a valuable design guide for R&D engineers and scientists engaged in design and development of lasers and optoelectronics systems, and technicians in their operation and maintenance. The tutorial approach serves as a useful reference for under-graduate and graduate students of lasers and optoelectronics, also PhD students in electronics, optoelectronics and physics.


Fundamentals of Optical Waveguides

Fundamentals of Optical Waveguides

Author: Katsunari Okamoto

Publisher: Elsevier

Published: 2010-08-04

Total Pages: 578

ISBN-13: 0080455069

DOWNLOAD EBOOK

Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. Exceptional new chapter on Arrayed-Waveguide Grating (AWG) In-depth discussion of Photonic Crystal Fibers (PCFs) Thorough explanation of Multimode Interference Devices (MMI) Full coverage of polarization Mode Dispersion (PMD)


The Essence of Optoelectronics

The Essence of Optoelectronics

Author: Kathryn M. Booth

Publisher: Prentice Hall PTR

Published: 1998

Total Pages: 304

ISBN-13:

DOWNLOAD EBOOK

This concise overview of optoelectronic technology features modular, easy-to-understand coverage. Topics include light and laser light, the fundamentals of optics, including the Maxwell-Boltzmann distribution, optical sources, optical fiber, photodetectors, imaging systems, display devices, and optoelectronic applications.


Fundamentals of Micro-Optics

Fundamentals of Micro-Optics

Author: Hans Zappe

Publisher: Cambridge University Press

Published: 2010-09-30

Total Pages: 646

ISBN-13: 1139493639

DOWNLOAD EBOOK

From optical fundamentals to advanced applications, this comprehensive guide to micro-optics covers all the key areas for those who need an in-depth introduction to micro-optic devices, technologies, and applications. Topics covered range from basic optics, optical materials, refraction, and diffraction, to micro-mirrors, micro-lenses, diffractive optics, optoelectronics, and fabrication. Advanced topics, such as tunable and nano-optics, are also discussed. Real-world case studies and numerous worked examples are provided throughout, making complex concepts easier to follow, whilst an extensive bibliography provides a valuable resource for further study. With exercises provided at the end of each chapter to aid and test understanding, this is an ideal textbook for graduate and advanced undergraduate students taking courses in optics, photonics, micro-optics, microsystems, and MEMs. It is also a useful self-study guide for research engineers working on optics development.


Physics of Optoelectronics

Physics of Optoelectronics

Author: Michael A. Parker

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 766

ISBN-13: 1420027719

DOWNLOAD EBOOK

Physics of Optoelectronics focuses on the properties of optical fields and their interaction with matter. Understanding that lasers, LEDs, and photodetectors clearly exemplify this interaction, the author begins with an introduction to lasers, LEDs, and the rate equations, then describes the emission and detection processes. The book summarizes and reviews the mathematical background of the quantum theory embodied in the Hilbert space. These concepts highlight the abstract form of the linear algebra for vectors and operators, supplying the "pictures" that make the subject more intuitive. A chapter on dynamics includes a brief review of the formalism for discrete sets of particles and continuous media. It also covers the quantum theory necessary for the study of optical fields, transitions, and semiconductor gain. This volume supplements the description of lasers and LEDs by examining the fundamental nature of the light that these devices produce. It includes an analysis of quantized electromagnetic fields and illustrates inherent quantum noise in terms of Poisson and sub-Poisson statistics. It explains matter-light interaction in terms of time-dependent perturbation theory and Fermi's golden rule, and concludes with a detailed discussion of semiconductor emitters and detectors.