Fundamentals of Optical Waveguides

Fundamentals of Optical Waveguides

Author: Katsunari Okamoto

Publisher: Elsevier

Published: 2010-08-04

Total Pages: 578

ISBN-13: 0080455069

DOWNLOAD EBOOK

Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. - Exceptional new chapter on Arrayed-Waveguide Grating (AWG) - In-depth discussion of Photonic Crystal Fibers (PCFs) - Thorough explanation of Multimode Interference Devices (MMI) - Full coverage of polarization Mode Dispersion (PMD)


Fundamentals of Optical Waveguides

Fundamentals of Optical Waveguides

Author: Katsunari Okamoto

Publisher: Academic Press

Published: 2006

Total Pages: 579

ISBN-13: 0125250967

DOWNLOAD EBOOK

Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. Features: + Exceptional new chapter on Arrayed-Waveguide Grating (AWG) + In depth discussion of Photonic Crystal Fibers (PCFs) + Thorough explanation of Multimode Interference Devices (MMI) + Full coverage of polarization Mode Dispersion (PMD) About the Author: Katsunari Okamoto was born in Hiroshima, Japan, on October 19, 1949. He received the B.S., M.S., and Ph.D. in electronic engineering from Tokyo University, Japan, in 1972, 1974, and 1977, respectively. He has engaged in research on the transmission characteristics of various fibers, including PANDA fibers, as well as fiber-optic components, and proposed the idea of dispersion-flattened fibers (DFF) on which he has also experimented. Dr. Okamoto has worked for the Optical Fiber Group in Southampton, England and the NTT Photonics Laboratories at the Ibaraki R&D Center, where he developed various AWGs and integrated-optic add/drop multiplexers. He is a fellow of IEEE and a research fellow of NTT Science and Core Technology Laboratory Group. In 2003, he started Okamoto Laboratory Ltd. Okamoto Laboratory is an R&D consulting company that deals with the custom design of optical fibers and functional planar lightwave circuits.


Fundamentals of Optical Waveguides

Fundamentals of Optical Waveguides

Author: Katsunari Okamoto

Publisher: Gulf Professional Publishing

Published: 2000-02-04

Total Pages: 452

ISBN-13: 9780125250955

DOWNLOAD EBOOK

"Fundamentals of Optical Waveguides" gives a complete theoretical basis of optical fibers and planar lightwave circuits, while being the first book to deal with the principles and applications of Arrayed Waveguide Grating multiplexers and Planar Lightwave Circuits. This comprehensive book enables researchers and graduate students working with optoelectronics to acquire and utilize the analysis techniques necessary for designing and simulating novel optical fibers and devices.


Optical Waveguides

Optical Waveguides

Author: María L. Calvo

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 424

ISBN-13: 1420017772

DOWNLOAD EBOOK

Although the theory and principles of optical waveguides have been established for more than a century, the technologies have only been realized in recent decades. Optical Waveguides: From Theory to Applied Technologies combines the most relevant aspects of waveguide theory with the study of current detailed waveguiding technologies, in particular, photonic devices, telecommunication applications, and biomedical optics. With self-contained chapters written by well-known specialists, the book features both fundamentals and applications. The first three chapters examine the theoretical foundations and bases of planar optical waveguides as well as critical optical properties such as birefringence and nonlinear optical phenomena. The next several chapters focus on contemporary waveguiding technologies that include photonic devices and telecommunications. The book concludes with discussions on additional technological applications, including biomedical optical waveguides and the potential of neutron waveguides. As optical waveguides play an increasing part in modern technology, photonics will become to the 21st century what electronics were to the 20th century. Offering both novel insights for experienced professionals and introductory material for novices, this book facilitates a better understanding of the new information era—the photonics century.


Advanced Materials for Integrated Optical Waveguides

Advanced Materials for Integrated Optical Waveguides

Author: Xingcun Colin Tong Ph.D

Publisher: Springer Science & Business Media

Published: 2013-10-17

Total Pages: 574

ISBN-13: 3319015508

DOWNLOAD EBOOK

This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, decreased interconnect delays, resistance to electromagnetic interference, and reduced crosstalk when integrated into standard electronic circuits. Integrated waveguide optics represents a truly multidisciplinary field of science and engineering, with continued growth requiring new developments in modeling, further advances in materials science, and innovations in integration platforms. In addition, the processing and fabrication of these new devices must be optimized in conjunction with the development of accurate and precise characterization and testing methods. Students and professionals in materials science and engineering will find Advanced Materials for Integrated Optical Waveguides to be an invaluable reference for meeting these research and development goals.


Guided Wave Photonics

Guided Wave Photonics

Author: Le Nguyen Binh

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 804

ISBN-13: 1439897166

DOWNLOAD EBOOK

A comprehensive presentation of the theory and simulation of optical waveguides and wave propagations in a guided environment, Guided Wave Photonics: Fundamentals and Applications with MATLAB supplies fundamental and advanced understanding of integrated optical devices that are currently employed in modern optical fiber communications systems and p


Principles of Optics for Engineers

Principles of Optics for Engineers

Author: William S. C. Chang

Publisher: Cambridge University Press

Published: 2015-05-28

Total Pages: 239

ISBN-13: 1107074908

DOWNLOAD EBOOK

Unites classical and modern photonics approaches, providing a thorough understanding of the interplay between plane waves, diffraction and modal analysis.


Optical Waveguide Concepts

Optical Waveguide Concepts

Author: Charles Vassallo

Publisher: Elsevier Publishing Company

Published: 1991-01-01

Total Pages: 322

ISBN-13: 9780444886842

DOWNLOAD EBOOK

Hardbound. This book is the first volume to appear in the new series Optical Wave Sciences and Technology. It provides a comprehensive review on recent trends in optical waveguide theory. The main focus of the work is on single-mode optics, examining in turn the basic tools, the derivation of normal modes, the perturbation problems and finally the discontinuity problems.This new book series, which is open ended, is aimed at scientists working in the field of electromagnetic theory and its applications. Maxwell's equations will form the ultimate basis, either explicitly or implicitly of every book in the series.


Foundations for Guided-Wave Optics

Foundations for Guided-Wave Optics

Author: Chin-Lin Chen

Publisher: John Wiley & Sons

Published: 2006-09-11

Total Pages: 482

ISBN-13: 0470042214

DOWNLOAD EBOOK

A classroom-tested introduction to integrated and fiber optics This text offers an in-depth treatment of integrated and fiber optics, providing graduate students, engineers, and scientists with a solid foundation of the principles, capabilities, uses, and limitations of guided-wave optic devices and systems. In addition to the transmission properties of dielectric waveguides and optical fibers, this book covers the principles of directional couplers, guided-wave gratings, arrayed-waveguide gratings, and fiber optic polarization components. The material is fully classroom-tested and carefully structured to help readers grasp concepts quickly and apply their knowledge to solving problems. Following an overview, including important nomenclature and notations, the text investigates three major topics: Integrated optics Fiber optics Pulse evolution and broadening in optical waveguides Each chapter starts with basic principles and gradually builds to more advanced concepts and applications. Compelling reasons for including each topic are given, detailed explanations of each concept are provided, and steps for each derivation are carefully set forth. Readers learn how to solve complex problems using physical concepts and simplified mathematics. Illustrations throughout the text aid in understanding key concepts, while problems at the end of each chapter test the readers' grasp of the material. The author has designed the text for upper-level undergraduates, graduate students in physics and electrical and computer engineering, and scientists. Each chapter is self-contained, enabling instructors to choose a subset of topics to match their particular course needs. Researchers and practitioners can also use the text as a self-study guide to gain a better understanding of photonic and fiber optic devices and systems.