Fundamentals of Number Theory

Fundamentals of Number Theory

Author: William J. LeVeque

Publisher: Courier Corporation

Published: 2014-01-05

Total Pages: 292

ISBN-13: 0486141500

DOWNLOAD EBOOK

This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given — making the book self-contained in this respect. The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory texts: factorization and primality of large integers, p-adic numbers, algebraic number fields, Brun's theorem on twin primes, and the transcendence of e, to mention a few. Readers will find a substantial number of well-chosen problems, along with many notes and bibliographical references selected for readability and relevance. Five helpful appendixes — containing such study aids as a factor table, computer-plotted graphs, a table of indices, the Greek alphabet, and a list of symbols — and a bibliography round out this well-written text, which is directed toward undergraduate majors and beginning graduate students in mathematics. No post-calculus prerequisite is assumed. 1977 edition.


An Adventurer's Guide to Number Theory

An Adventurer's Guide to Number Theory

Author: Richard Friedberg

Publisher: Courier Corporation

Published: 2012-07-06

Total Pages: 241

ISBN-13: 0486152693

DOWNLOAD EBOOK

This witty introduction to number theory deals with the properties of numbers and numbers as abstract concepts. Topics include primes, divisibility, quadratic forms, and related theorems.


Proofs and Fundamentals

Proofs and Fundamentals

Author: Ethan D. Bloch

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 434

ISBN-13: 1461221307

DOWNLOAD EBOOK

The aim of this book is to help students write mathematics better. Throughout it are large exercise sets well-integrated with the text and varying appropriately from easy to hard. Basic issues are treated, and attention is given to small issues like not placing a mathematical symbol directly after a punctuation mark. And it provides many examples of what students should think and what they should write and how these two are often not the same.


Elementary Number Theory: Primes, Congruences, and Secrets

Elementary Number Theory: Primes, Congruences, and Secrets

Author: William Stein

Publisher: Springer Science & Business Media

Published: 2008-10-28

Total Pages: 173

ISBN-13: 0387855254

DOWNLOAD EBOOK

This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.


Number Theory

Number Theory

Author:

Publisher: Academic Press

Published: 1986-05-05

Total Pages: 449

ISBN-13: 0080873324

DOWNLOAD EBOOK

This book is written for the student in mathematics. Its goal is to give a view of the theory of numbers, of the problems with which this theory deals, and of the methods that are used. We have avoided that style which gives a systematic development of the apparatus and have used instead a freer style, in which the problems and the methods of solution are closely interwoven. We start from concrete problems in number theory. General theories arise as tools for solving these problems. As a rule, these theories are developed sufficiently far so that the reader can see for himself their strength and beauty, and so that he learns to apply them. Most of the questions that are examined in this book are connected with the theory of diophantine equations - that is, with the theory of the solutions in integers of equations in several variables. However, we also consider questions of other types; for example, we derive the theorem of Dirichlet on prime numbers in arithmetic progressions and investigate the growth of the number of solutions of congruences.


Introduction to Number Theory

Introduction to Number Theory

Author: Mathew Crawford

Publisher: Ingram

Published: 2008

Total Pages: 0

ISBN-13: 9781934124123

DOWNLOAD EBOOK

"Learn the fundamentals of number theory from former MATHCOUNTS, AHSME, and AIME perfect scorer Mathew Crawford. Topics covered in the book include primes & composites, multiples & divisors, prime factorization and its uses, base numbers, modular arithmetic, divisibility rules, linear congruences, how to develop number sense, and much more. The text is structured to inspire the reader to explore and develop new ideas. Each section starts with problems, so the student has a chance to solve them without help before proceeding. The text then includes motivated solutions to these problems, through which concepts and curriculum of number theory are taught. Important facts and powerful problem solving approaches are highlighted throughout the text. In addition to the instructional material, the book contains hundreds of problems ... This book is ideal for students who have mastered basic algebra, such as solving linear equations. Middle school students preparing for MATHCOUNTS, high school students preparing for the AMC, and other students seeking to master the fundamentals of number theory will find this book an instrumental part of their mathematics libraries."--Publisher's website


Fundamentals of Discrete Math for Computer Science

Fundamentals of Discrete Math for Computer Science

Author: Tom Jenkyns

Publisher: Springer Science & Business Media

Published: 2012-10-16

Total Pages: 424

ISBN-13: 1447140699

DOWNLOAD EBOOK

This textbook provides an engaging and motivational introduction to traditional topics in discrete mathematics, in a manner specifically designed to appeal to computer science students. The text empowers students to think critically, to be effective problem solvers, to integrate theory and practice, and to recognize the importance of abstraction. Clearly structured and interactive in nature, the book presents detailed walkthroughs of several algorithms, stimulating a conversation with the reader through informal commentary and provocative questions. Features: no university-level background in mathematics required; ideally structured for classroom-use and self-study, with modular chapters following ACM curriculum recommendations; describes mathematical processes in an algorithmic manner; contains examples and exercises throughout the text, and highlights the most important concepts in each section; selects examples that demonstrate a practical use for the concept in question.


Fundamentals of Mathematical Analysis

Fundamentals of Mathematical Analysis

Author: Adel N. Boules

Publisher: Oxford University Press, USA

Published: 2021-03-09

Total Pages: 481

ISBN-13: 0198868782

DOWNLOAD EBOOK

Fundamentals of Mathematical Analysis explores real and functional analysis with a substantial component on topology. The three leading chapters furnish background information on the real and complex number fields, a concise introduction to set theory, and a rigorous treatment of vector spaces. Fundamentals of Mathematical Analysis is an extensive study of metric spaces, including the core topics of completeness, compactness and function spaces, with a good number of applications. The later chapters consist of an introduction to general topology, a classical treatment of Banach and Hilbert spaces, the elements of operator theory, and a deep account of measure and integration theories. Several courses can be based on the book. This book is suitable for a two-semester course on analysis, and material can be chosen to design one-semester courses on topology or real analysis. It is designed as an accessible classical introduction to the subject and aims to achieve excellent breadth and depth and contains an abundance of examples and exercises. The topics are carefully sequenced, the proofs are detailed, and the writing style is clear and concise. The only prerequisites assumed are a thorough understanding of undergraduate real analysis and linear algebra, and a degree of mathematical maturity.


A Course in Number Theory and Cryptography

A Course in Number Theory and Cryptography

Author: Neal Koblitz

Publisher: Springer Science & Business Media

Published: 2012-09-05

Total Pages: 245

ISBN-13: 1441985921

DOWNLOAD EBOOK

This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.