Fundamentals of III-V Semiconductor MOSFETs

Fundamentals of III-V Semiconductor MOSFETs

Author: Serge Oktyabrsky

Publisher: Springer Science & Business Media

Published: 2010-03-16

Total Pages: 451

ISBN-13: 1441915478

DOWNLOAD EBOOK

Fundamentals of III-V Semiconductor MOSFETs presents the fundamentals and current status of research of compound semiconductor metal-oxide-semiconductor field-effect transistors (MOSFETs) that are envisioned as a future replacement of silicon in digital circuits. The material covered begins with a review of specific properties of III-V semiconductors and available technologies making them attractive to MOSFET technology, such as band-engineered heterostructures, effect of strain, nanoscale control during epitaxial growth. Due to the lack of thermodynamically stable native oxides on III-V's (such as SiO2 on Si), high-k oxides are the natural choice of dielectrics for III-V MOSFETs. The key challenge of the III-V MOSFET technology is a high-quality, thermodynamically stable gate dielectric that passivates the interface states, similar to SiO2 on Si. Several chapters give a detailed description of materials science and electronic behavior of various dielectrics and related interfaces, as well as physics of fabricated devices and MOSFET fabrication technologies. Topics also include recent progress and understanding of various materials systems; specific issues for electrical measurement of gate stacks and FETs with low and wide bandgap channels and high interface trap density; possible paths of integration of different semiconductor materials on Si platform.


Semiconductor Gas Sensors

Semiconductor Gas Sensors

Author: Raivo Jaaniso

Publisher: Woodhead Publishing

Published: 2019-09-24

Total Pages: 512

ISBN-13: 0081025602

DOWNLOAD EBOOK

Semiconductor Gas Sensors, Second Edition, summarizes recent research on basic principles, new materials and emerging technologies in this essential field. Chapters cover the foundation of the underlying principles and sensing mechanisms of gas sensors, include expanded content on gas sensing characteristics, such as response, sensitivity and cross-sensitivity, present an overview of the nanomaterials utilized for gas sensing, and review the latest applications for semiconductor gas sensors, including environmental monitoring, indoor monitoring, medical applications, CMOS integration and chemical warfare agents. This second edition has been completely updated, thus ensuring it reflects current literature and the latest materials systems and applications. - Includes an overview of key applications, with new chapters on indoor monitoring and medical applications - Reviews developments in gas sensors and sensing methods, including an expanded section on gas sensor theory - Discusses the use of nanomaterials in gas sensing, with new chapters on single-layer graphene sensors, graphene oxide sensors, printed sensors, and much more


Metal-Dielectric Interfaces in Gigascale Electronics

Metal-Dielectric Interfaces in Gigascale Electronics

Author: Ming He

Publisher: Springer Science & Business Media

Published: 2012-02-02

Total Pages: 155

ISBN-13: 1461418127

DOWNLOAD EBOOK

Metal-dielectric interfaces are ubiquitous in modern electronics. As advanced gigascale electronic devices continue to shrink, the stability of these interfaces is becoming an increasingly important issue that has a profound impact on the operational reliability of these devices. In this book, the authors present the basic science underlying the thermal and electrical stability of metal-dielectric interfaces and its relationship to the operation of advanced interconnect systems in gigascale electronics. Interface phenomena, including chemical reactions between metals and dielectrics, metallic-atom diffusion, and ion drift, are discussed based on fundamental physical and chemical principles. Schematic diagrams are provided throughout the book to illustrate interface phenomena and the principles that govern them. Metal-Dielectric Interfaces in Gigascale Electronics provides a unifying approach to the diverse and sometimes contradictory test results that are reported in the literature on metal-dielectric interfaces. The goal is to provide readers with a clear account of the relationship between interface science and its applications in interconnect structures. The material presented here will also be of interest to those engaged in field-effect transistor and memristor device research, as well as university researchers and industrial scientists working in the areas of electronic materials processing, semiconductor manufacturing, memory chips, and IC design.


Integration of Advanced Micro- and Nanoelectronic Devices--critical Issues and Solutions

Integration of Advanced Micro- and Nanoelectronic Devices--critical Issues and Solutions

Author: Materials Research Society. Meeting

Publisher:

Published: 2004

Total Pages: 506

ISBN-13:

DOWNLOAD EBOOK

"This volume is the joint proceedings of papers presented in Symposium D, 'High-k Insulators and Ferroelectrics for Advanced Microelectronic Devices,' and Symposium E, 'Integration Challenges in Next-Generation Oxide-Based Nanoelectronics,' held April 13-16 at the 2004 MRS Spring Meeting in San Francisco, California."--p. x


Fundamentals of Solid State Electronics

Fundamentals of Solid State Electronics

Author: Chih-Tang Sah

Publisher: World Scientific Publishing Company

Published: 1991-10-30

Total Pages: 1040

ISBN-13: 9813103493

DOWNLOAD EBOOK

This is perhaps the most comprehensive undergraduate textbook on the fundamental aspects of solid state electronics. It presents basic and state-of-the-art topics on materials physics, device physics, and basic circuit building blocks not covered by existing textbooks on the subject. Each topic is introduced with a historical background and motivations of device invention and circuit evolution. Fundamental physics is rigorously discussed with minimum need of tedious algebra and advanced mathematics. Another special feature is a systematic classification of fundamental mechanisms not found even in advanced texts. It bridges the gap between solid state device physics covered here with what students have learnt in their first two years of study. Used very successfully in a one-semester introductory core course for electrical and other engineering, materials science and physics junior students, the second part of each chapter is also used in an advanced undergraduate course on solid state devices. The inclusion of previously unavailable analyses of the basic transistor digital circuit building blocks and cells makes this an excellent reference for engineers to look up fundamental concepts and data, design formulae, and latest devices such as the GeSi heterostructure bipolar transistors. This book is also available as a set with Fundamentals of Solid-State Electronics — Study Guide and Fundamentals of Solid-State Electronics — Solution Manual.


Materials Fundamentals of Gate Dielectrics

Materials Fundamentals of Gate Dielectrics

Author: Alexander A. Demkov

Publisher: Springer Science & Business Media

Published: 2006-05-24

Total Pages: 477

ISBN-13: 1402030789

DOWNLOAD EBOOK

This book presents materials fundamentals of novel gate dielectrics that are being introduced into semiconductor manufacturing to ensure the continuous scalling of the CMOS devices. This is a very fast evolving field of research so we choose to focus on the basic understanding of the structure, thermodunamics, and electronic properties of these materials that determine their performance in device applications. Most of these materials are transition metal oxides. Ironically, the d-orbitals responsible for the high dielectric constant cause sever integration difficulties thus intrinsically limiting high-k dielectrics. Though new in the electronics industry many of these materials are wel known in the field of ceramics, and we describe this unique connection. The complexity of the structure-property relations in TM oxides makes the use of the state of the art first-principles calculations necessary. Several chapters give a detailed description of the modern theory of polarization, and heterojunction band discontinuity within the framework of the density functional theory. Experimental methods include oxide melt solution calorimetry and differential scanning calorimetry, Raman scattering and other optical characterization techniques, transmission electron microscopy, and x-ray photoelectron spectroscopy. Many of the problems encounterd in the world of CMOS are also relvant for other semiconductors such as GaAs. A comprehensive review of recent developments in this field is thus also given. The book should be of interest to those actively engaged in the gate dielectric research, and to graduate students in Materials Science, Materials Physics, Materials Chemistry, and Electrical Engineering.


Nanoscale Materials and Modeling--relations Among Processing, Microstructure and Mechanical Properties

Nanoscale Materials and Modeling--relations Among Processing, Microstructure and Mechanical Properties

Author: Materials Research Society. Meeting

Publisher:

Published: 2004

Total Pages: 426

ISBN-13:

DOWNLOAD EBOOK

The 55 papers in this collection from the April 2004 symposium study processing methods for nanostructured materials, internal stress and the physics of strengthening mechanisms at the nanoscale, and the mechanical properties of nanoscale materials. Each of the six parts presents experimental contributions first, followed by papers describing related modeling and simulation. Topics include the effect of gold films electrodeposited on nickel substrates, microstructural refinement in copper solid solutions by machining, the synthesis of zeolite as ordered multi-crystal arrays, the elevated temperature mechanical properties of devitrified metallic glass, and improved fracture toughness in advanced nanocrystalline ceramic composites. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).


Integration of Functional Oxides with Semiconductors

Integration of Functional Oxides with Semiconductors

Author: Alexander A. Demkov

Publisher: Springer Science & Business Media

Published: 2014-02-20

Total Pages: 284

ISBN-13: 146149320X

DOWNLOAD EBOOK

This book describes the basic physical principles of the oxide/semiconductor epitaxy and offers a view of the current state of the field. It shows how this technology enables large-scale integration of oxide electronic and photonic devices and describes possible hybrid semiconductor/oxide systems. The book incorporates both theoretical and experimental advances to explore the heteroepitaxy of tuned functional oxides and semiconductors to identify material, device and characterization challenges and to present the incredible potential in the realization of multifunctional devices and monolithic integration of materials and devices. Intended for a multidisciplined audience, Integration of Functional Oxides with Semiconductors describes processing techniques that enable atomic-level control of stoichiometry and structure and reviews characterization techniques for films, interfaces and device performance parameters. Fundamental challenges involved in joining covalent and ionic systems, chemical interactions at interfaces, multi-element materials that are sensitive to atomic-level compositional and structural changes are discussed in the context of the latest literature. Magnetic, ferroelectric and piezoelectric materials and the coupling between them will also be discussed. GaN, SiC, Si, GaAs and Ge semiconductors are covered within the context of optimizing next-generation device performance for monolithic device processing.