Fundamentals of Microelectronics, 2nd Edition is designed to build a strong foundation in both design and analysis of electronic circuits this text offers conceptual understanding and mastery of the material by using modern examples to motivate and prepare readers for advanced courses and their careers. The books unique problem-solving framework enables readers to deconstruct complex problems into components that they are familiar with which builds the confidence and intuitive skills needed for success.
By helping students develop an intuitive understanding of the subject, Microelectronics teaches them to think like engineers. The second edition of Razavi’s Microelectronics retains its hallmark emphasis on analysis by inspection and building students’ design intuition, and it incorporates a host of new pedagogical features that make it easier to teach and learn from, including: application sidebars, self-check problems with answers, simulation problems with SPICE and MULTISIM, and an expanded problem set that is organized by degree of difficulty and more clearly associated with specific chapter sections.
This book serves as a practical guide for practicing engineers who need to design analog circuits for microelectronics. Readers will develop a comprehensive understanding of the basic techniques of analog modern electronic circuit design, discrete and integrated, application as sensors and control and data acquisition systems,and techniques of PCB design. · Describes fundamentals of microelectronics design in an accessible manner; · Takes a problem-solving approach to the topic, offering a hands-on guide for practicing engineers; · Provides realistic examples to inspire a thorough understanding of system-level issues, before going into the detail of components and devices; · Uses a new approach and provides several skills that help engineers and designers retain key and advanced concepts.
The Acclaimed RF Microelectronics Best-Seller, Expanded and Updated for the Newest Architectures, Circuits, and Devices Wireless communication has become almost as ubiquitous as electricity, but RF design continues to challenge engineers and researchers. In the 15 years since the first edition of this classic text, the demand for higher performance has led to an explosive growth of RF design techniques. In RF Microelectronics, Second Edition, Behzad Razavi systematically teaches the fundamentals as well as the state-of-the-art developments in the analysis and design of RF circuits and transceivers. Razavi has written the second edition to reflect today’s RF microelectronics, covering key topics in far greater detail. At nearly three times the length of the first edition, the second edition is an indispensable tome for both students and practicing engineers. With his lucid prose, Razavi now Offers a stronger tutorial focus along with hundreds of examples and problems Teaches design as well as analysis with the aid of step-by-step design procedures and a chapter dedicated to the design of a dual-band WiFi transceiver Describes new design paradigms and analysis techniques for circuits such as low-noise amplifiers, mixers, oscillators, and frequency dividers This edition’s extensive coverage includes brand new chapters on mixers, passive devices, integer-N synthesizers, and fractional-N synthesizers. Razavi’s teachings culminate in a new chapter that begins with WiFi’s radio specifications and, step by step, designs the transceiver at the transistor level. Coverage includes Core RF principles, including noise and nonlinearity, with ties to analog design, microwave theory, and communication systems An intuitive treatment of modulation theory and wireless standards from the standpoint of the RF IC designer Transceiver architectures such as heterodyne, sliding-IF, directconversion, image-reject, and low-IF topologies. Low-noise amplifiers, including cascode common-gate and commonsource topologies, noise-cancelling schemes, and reactance-cancelling configurations Passive and active mixers, including their gain and noise analysis and new mixer topologies Voltage-controlled oscillators, phase noise mechanisms, and various VCO topologies dealing with noisepower-tuning trade-offs All-new coverage of passive devices, such as integrated inductors, MOS varactors, and transformers A chapter on the analysis and design of phase-locked loops with emphasis on low phase noise and low spur levels Two chapters on integer-N and fractional-N synthesizers, including the design of frequency dividers Power amplifier principles and circuit topologies along with transmitter architectures, such as polar modulation and outphasing
The microelectronics evolution has given rise to many modern benefits but has also changed design methods and attitudes to learning. Technology advancements shifted focus from simple circuits to complex systems with major attention to high-level descriptions. The design methods moved from a bottom-up to a top-down approach. For today’s students, the most beneficial approach to learning is this top-down method that demonstrates a global view of electronics before going into specifics. Franco Maloberti uses this approach to explain the fundamentals of electronics, such as processing functions, signals and their properties. Here he presents a helpful balance of theory, examples, and verification of results, while keeping mathematics and signal processing theory to a minimum. Key features: Presents a new learning approach that will greatly improve students’ ability to retain key concepts in electronics studies Match the evolution of Computer Aided Design (CAD) which focuses increasingly on high-level design Covers sub-functions as well as basic circuits and basic components Provides real-world examples to inspire a thorough understanding of global issues, before going into the detail of components and devices Discusses power conversion and management; an important area that is missing in other books on the subject End-of-chapter problems and self-training sections support the reader in exploring systems and understanding them at increasing levels of complexity Inside this book you will find a complete explanation of electronics that can be applied across a range of disciplines including electrical engineering and physics. This comprehensive introduction will be of benefit to students studying electronics, as well as their lecturers and professors. Postgraduate engineers, those in vocational training, and design and application engineers will also find this book useful.
This book covers the fundamental knowledge of layout design from the ground up, addressing both physical design, as generally applied to digital circuits, and analog layout. Such knowledge provides the critical awareness and insights a layout designer must possess to convert a structural description produced during circuit design into the physical layout used for IC/PCB fabrication. The book introduces the technological know-how to transform silicon into functional devices, to understand the technology for which a layout is targeted (Chap. 2). Using this core technology knowledge as the foundation, subsequent chapters delve deeper into specific constraints and aspects of physical design, such as interfaces, design rules and libraries (Chap. 3), design flows and models (Chap. 4), design steps (Chap. 5), analog design specifics (Chap. 6), and finally reliability measures (Chap. 7). Besides serving as a textbook for engineering students, this book is a foundational reference for today’s circuit designers. For Slides and Other Information: https://www.ifte.de/books/pd/index.html
Microelectronic Circuits by Sedra and Smith has served generations of electrical and computer engineering students as the best and most widely-used text for this required course. Respected equally as a textbook and reference, "Sedra/Smith" combines a thorough presentation of fundamentals with an introduction to present-day IC technology. It remains the best text for helping students progress from circuit analysis to circuit design, developing design skills and insights that are essential to successful practice in the field. Significantly revised with the input of two new coauthors, slimmed down, and updated with the latest innovations, Microelectronic Circuits, Eighth Edition, remains the gold standard in providing the most comprehensive, flexible, accurate, and design-oriented treatment of electronic circuits available today.
Microelectronics is a complex world where many sciences need to collaborate to create nano-objects: we need expertise in electronics, microelectronics, physics, optics and mechanics also crossing into chemistry, electrochemistry, as well as biology, biochemistry and medicine. Chemistry is involved in many fields from materials, chemicals, gases, liquids or salts, the basics of reactions and equilibrium, to the optimized cleaning of surfaces and selective etching of specific layers. In addition, over recent decades, the size of the transistors has been drastically reduced while the functionality of circuits has increased. This book consists of five chapters covering the chemicals and sequences used in processing, from cleaning to etching, the role and impact of their purity, along with the materials used in “Front End Of the Line” which corresponds to the heart and performance of individual transistors, then moving on to the “Back End Of the Line” which is related to the interconnection of all the transistors. Finally, the need for specific functionalization also requires key knowledge on surface treatments and chemical management to allow new applications. Contents 1. Chemistry in the “Front End of the Line” (FEOL): Deposits, Gate Stacks, Epitaxy and Contacts, François Martin, Jean-Michel Hartmann, Véronique Carron and Yannick Le Tiec. 2. Chemistry in Interconnects, Vincent Jousseaume, Paul-Henri Haumesser, Carole Pernel, Jeffery Butterbaugh, Sylvain Maîtrejean and Didier Louis. 3. The Chemistry of Wet Surface Preparation: Cleaning, Etching and Drying, Yannick Le Tiec and Martin Knotter. 4. The Use and Management of Chemical Fluids in Microelectronics, Christiane Gottschalk, Kevin Mclaughlin, Julie Cren, Catherine Peyne and Patrick Valenti. 5. Surface Functionalization for Micro- and Nanosystems: Application to Biosensors, Antoine Hoang, Gilles Marchand, Guillaume Nonglaton, Isabelle Texier-Nogues and Francoise Vinet. About the Authors Yannick Le Tiec is a technical expert at CEA-Leti, Minatec since 2002. He is a CEA-Leti assignee at IBM, Albany (NY) to develop the advanced 14 nm CMOS node and the FDSOI technology. He held different technical positions from the advanced 300 mm SOI CMOS pilot line to different assignments within SOITEC for advanced wafer development and later within INES to optimize solar cell ramp-up and yield. He has been part of the ITRS Front End technical working group at ITRS since 2008.
Composed of contributions from top experts, Microelectronics to Nanoelectronics: Materials, Devices and Manufacturability offers a detailed overview of important recent scientific and technological developments in the rapidly evolving nanoelectronics arena. Under the editorial guidance and technical expertise of noted materials scientist Anupama B. Kaul of California Institute of Technology’s Jet Propulsion Lab, this book captures the ascent of microelectronics into the nanoscale realm. It addresses a wide variety of important scientific and technological issues in nanoelectronics research and development. The book also showcases some key application areas of micro-electro-mechanical-systems (MEMS) that have reached the commercial realm. Capitalizing on Dr. Kaul’s considerable technical experience with micro- and nanotechnologies and her extensive research in prestigious academic and industrial labs, the book offers a fresh perspective on application-driven research in micro- and nanoelectronics, including MEMS. Chapters explore how rapid developments in this area are transitioning from the lab to the market, where new and exciting materials, devices, and manufacturing technologies are revolutionizing the electronics industry. Although many micro- and nanotechnologies still face major scientific and technological challenges and remain within the realm of academic research labs, rapid advances in this area have led to the recent emergence of new applications and markets. This handbook encapsulates that exciting recent progress by providing high-quality content contributed by international experts from academia, leading industrial institutions—such as Hewlett-Packard—and government laboratories including the U.S. Department of Energy’s Sandia National Laboratory. Offering something for everyone, from students to scientists to entrepreneurs, this book showcases the broad spectrum of cutting-edge technologies that show significant promise for electronics and related applications in which nanotechnology plays a key role.