This book is based on a course given by the author to third and fourth year undergraduate students from physics, engineering physics and electrical engineering. The purpose is to introduce and explain some of the fundamental principles underlying laser beam control in optoelectronics, especially those in relation to optical anisotropy which is at the heart of many optical devices. The contents of the book are scattered in many sources and there seems to be no single source available at the undergraduate level. That is why the present book is written. The book attempts to give the reader a good background needed for working in a laser, optoelectronic or photonic laboratory so that the use of equipment and the control of laser beams can be mastered without difficulty.
With emphasis on the physical and engineering principles, this book provides a comprehensive and highly accessible treatment of modern lasers and optoelectronics. Divided into four parts, it explains laser fundamentals, types of lasers, laser electronics & optoelectronics, and laser applications, covering each of the topics in their entirety, from basic fundamentals to advanced concepts. Key features include: exploration of technological and application-related aspects of lasers and optoelectronics, detailing both existing and emerging applications in industry, medical diagnostics and therapeutics, scientific studies and Defence. simple explanation of the concepts and essential information on electronics and circuitry related to laser systems illustration of numerous solved and unsolved problems, practical examples, chapter summaries, self-evaluation exercises, and a comprehensive list of references for further reading This volume is a valuable design guide for R&D engineers and scientists engaged in design and development of lasers and optoelectronics systems, and technicians in their operation and maintenance. The tutorial approach serves as a useful reference for under-graduate and graduate students of lasers and optoelectronics, also PhD students in electronics, optoelectronics and physics.
Laser Fundamentals provides a clear and comprehensive introduction to the physical and engineering principles of laser operation and design. Simple explanations, based throughout on key underlying concepts, lead the reader logically from the basics of laser action to advanced topics in laser physics and engineering. Much new material has been added to this second edition, especially in the areas of solid-state lasers, semiconductor lasers, and laser cavities. This 2004 edition contains a new chapter on laser operation above threshold, including extensive discussion of laser amplifiers. The clear explanations, worked examples, and many homework problems will make this book invaluable to undergraduate and first-year graduate students in science and engineering taking courses on lasers. The summaries of key types of lasers, the use of many unique theoretical descriptions, and the extensive bibliography will also make this a valuable reference work for researchers.
Covering a broad range of topics in modern optical physics and engineering, this textbook is invaluable for undergraduate students studying laser physics, optoelectronics, photonics, applied optics and optical engineering. This new edition has been re-organized, and now covers many new topics such as the optics of stratified media, quantum well lasers and modulators, free electron lasers, diode-pumped solid state and gas lasers, imaging and non-imaging optical systems, squeezed light, periodic poling in nonlinear media, very short pulse lasers and new applications of lasers. The textbook gives a detailed introduction to the basic physics and engineering of lasers, as well as covering the design and operational principles of a wide range of optical systems and electro-optic devices. It features full details of important derivations and results, and provides many practical examples of the design, construction and performance characteristics of different types of lasers and electro-optic devices.
Ranging from fundamental theoretical concepts to advanced device technologies, this reference/text explores the engineering, characteristics, and performance of specific semiconductor lasers. It defines key principles in electromagnetics, optoelectronics, and laser implementation for novel applications in optical communications, storage, processing
Principles of Lasers and Optics, first published in 2005, describes both the fundamental principles of the laser and the propagation and application of laser radiation in bulk and guided-wave components. All solid state, gas and semiconductor lasers are analysed uniformly as macroscopic devices with susceptibility originated from quantum mechanical interactions to develop an overall understanding of the coherent nature of laser radiation. Analyses of the unique properties of coherent laser light in bulk and guided-wave components are presented together and derived from fundamental principles, to allow students to appreciate the differences and similarities. Topics covered include discussions on how laser radiation should be analysed, the macroscopic differences and similarities of various analyses, special techniques, types of lasers and setting up laser analyses. This text will be useful for first-year graduates in electrical engineering and physics and also as a reference book on analytical techniques.
This in-depth title discusses the underlying physics and operational principles of semiconductor lasers. It analyzes the optical and electronic properties of the semiconductor medium in detail, including quantum confinement and gain-engineering effects. The text also includes recent developments in blue-emitting semiconductor lasers.
With the maturation of laser technology in diagnostic and conservation applications, conservation scientists, archeologists, art historians, researchers, and advanced science-oriented students now have the tools necessary for preserving the future of our past-our cultural heritage. Presenting recent developments in the field, Lasers in the Preservation of Cultural Heritage: Principles and Applications addresses the basic concepts of laser applications and supplies case studies of analytical, structural diagnostic, and laser cleaning applications. The book provides a comprehensive presentation of the fundamental principles and applications of modern laser technology in the analysis of composition, diagnostics of structural integrity, and conservation of artworks and antiquities. Beginning with an introduction to the basic techniques used in art conservation and archeology, the book describes the fundamental aspects of laser-matter interactions, emphasizing laser diagnostics and laser processing applications. The next few chapters focus on laser-based spectroscopic techniques for the analysis of the composition of materials in art and archaeology, including laser-induced breakdown, Raman, and laser-induced fluorescence spectroscopic techniques. The book proceeds to highlight nondestructive diagnostic techniques, laser processing applications, laser applications for the cleaning of paintings and stone, and methods for the removal of encrustations. It concludes with case studies for the conservation of materials like parchment, paper, metal, ivory, and wood, and includes conservation approaches for modern paintings. Bridging science with art, Lasers in the Preservation of Cultural Heritage presents a systematic overview of the fundamentals and applications of laser techniques in artwork conservation and archeological science.
This textbook is based on a course given by the first-named author to third and fourth year undergraduate students from physics, engineering physics and electrical engineering. The purpose is to introduce and explain some of the fundamental principles underlying laser beam control in optoelectronics, especially those in relation to optical anisotropy which is at the heart of many optical devices. The book attempts to give the reader the background knowledge needed to work in a laser, optoelectronic or photonic environment, and to manage and handle laser beam equipment with ease.In this edition, recent research results on modern technologies and instruments relevant to laser optoelectronics have been added to each chapter. New material include: chirped pulse amplification for petawatt lasers; optical anisotropy; physical explanations for group velocity dispersion, group delay dispersion, and third order dispersion; an introduction of different types of laser systems; and both optical isotropy and anisotropy in different types of harmonic generation.Theories based upon mode-locking and chirped pulse amplifications have become increasingly more important. It is thus necessary that students learn all these in a course devoted to laser optoelectronics. As such, Chapter 12 is now devoted to mode-locking and carrier-envelope phase locking. A new chapter, Chapter 13, which focuses on chirped pulse amplification has also been added.
This updated, second edition textbook provides a thorough and accessible treatment of semiconductor lasers from a design and engineering perspective. It includes both the physics of devices as well as the engineering, designing and testing of practical lasers. The material is presented clearly with many examples provided. Readers of the book will come to understand the finer aspects of the theory, design, fabrication and test of these devices and have an excellent background for further study of optoelectronics.