Fundamentals of Electromagnetics for Electrical and Computer Engineering

Fundamentals of Electromagnetics for Electrical and Computer Engineering

Author: Nannapaneni Narayana Rao

Publisher: Pearson Higher Ed

Published: 2011-11-21

Total Pages: 481

ISBN-13: 0133002268

DOWNLOAD EBOOK

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Fundamentals of Electromagnetics for Electrical and Computer Engineering, First Edition is appropriate for all beginning courses in electromagnetics, in both electrical engineering and computer engineering programs. This is ideal for anyone interested in learning more about electromagnetics. Dr. N. Narayana Rao has designed this compact, one-semester textbook in electromagnetics to fully reflect the evolution of technologies in both electrical and computer engineering. This book’s unique approach begins with Maxwell’s equations for time-varying fields (first in integral and then in differential form), and also introduces waves at the outset. Building on these core concepts, Dr. Rao treats each category of fields as solutions to Maxwell’s equations, highlighting the frequency behavior of physical structures. Next, he systematically introduces the topics of transmission lines, waveguides, and antennas. To keep the subject’s geometry as simple as possible, while ensuring that students master the physical concepts and mathematical tools they will need, Rao makes extensive use of the Cartesian coordinate system. Topics covered in this book include: uniform plane wave propagation; material media and their interaction with uniform plane wave fields; essentials of transmission-line analysis (both frequency- and time-domain); metallic waveguides; and Hertzian dipole field solutions. Material on cylindrical and spherical coordinate systems is presented in appendices, where it can be studied whenever relevant or convenient. Worked examples are presented throughout to illuminate (and in some cases extend) key concepts; each chapter also contains a summary and review questions. (Note: this book provides a one-semester alternative to Dr. Rao’s classic textbook for two-semester courses, Elements of Engineering Electromagnetics, now in its Sixth Edition.)


Fundamentals of Electromagnetics for Electrical and Computer Engineering

Fundamentals of Electromagnetics for Electrical and Computer Engineering

Author: Nannapaneni Narayana Rao

Publisher: Prentice Hall

Published: 2009

Total Pages: 481

ISBN-13: 0136013333

DOWNLOAD EBOOK

Fundamentals of Electromagnetics for Electrical and Computer Engineering, First Edition is appropriate for all beginning courses in electromagnetics, in both electrical engineering and computer engineering programs. This is ideal for anyone interested in learning more about electromagnetics. Dr. N. Narayana Rao has designed this compact, one-semester textbook in electromagnetics to fully reflect the evolution of technologies in both electrical and computer engineering. This book's unique approach begins with Maxwell's equations for time-varying fields (first in integral and then in differential form), and also introduces waves at the outset. Building on these core concepts, Dr. Rao treats each category of fields as solutions to Maxwell's equations, highlighting the frequency behavior of physical structures. Next, he systematically introduces the topics of transmission lines, waveguides, and antennas. To keep the subject's geometry as simple as possible, while ensuring that students master the physical concepts and mathematical tools they will need, Rao makes extensive use of the Cartesian coordinate system. Topics covered in this book include: uniform plane wave propagation; material media and their interaction with uniform plane wave fields; essentials of transmission-line analysis (both frequency- and time-domain); metallic waveguides; and Hertzian dipole field solutions. Material on cylindrical and spherical coordinate systems is presented in appendices, where it can be studied whenever relevant or convenient. Worked examples are presented throughout to illuminate (and in some cases extend) key concepts; each chapter also contains a summary and review questions. (Note: this book provides a one-semester alternative to Dr. Rao's classic textbook for two-semester courses, Elements of Engineering Electromagnetics, now in its Sixth Edition.)


Fundamentals of Engineering Electromagnetics

Fundamentals of Engineering Electromagnetics

Author: David K. Cheng

Publisher: Pearson Higher Ed

Published: 2014-03-20

Total Pages: 511

ISBN-13: 1292038969

DOWNLOAD EBOOK

Fundamental of Engineering Electromagnetics not only presents the fundamentals of electromagnetism in a concise and logical manner, but also includes a variety of interesting and important applications. While adapted from his popular and more extensive work, Field and Wave Electromagnetics, this text incorporates a number of innovative pedagogical features. Each chapter begins with an overview which serves to offer qualitative guidance to the subject matter and motivate the student. Review questions and worked examples throughout each chapter reinforce the student's understanding of the material. Remarks boxes following the review questions and margin notes throughout the book serve as additional pedagogical aids.


Electromagnetic Fields and Waves: Fundamentals of Engineering

Electromagnetic Fields and Waves: Fundamentals of Engineering

Author: Sedki M. Riad

Publisher: McGraw Hill Professional

Published: 2019-12-27

Total Pages: 689

ISBN-13: 126045715X

DOWNLOAD EBOOK

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Understand electromagnetic field principles, engineering techniques, and applications This core introductory-level undergraduate textbook offers a solid coverage of the fundamentals of electromagnetic fields and waves. Written by two electrical engineering experts and experienced educators, the book is designed to accommodate both one and two semester curricula. Electromagnetic Fields and Waves: Fundamentals of Engineering presents detailed explanations of the topic of EM fields in a holistic fashion that integrates the math and the physics of the material with students’ realistic preparation in mind. You will learn about static and time-varying fields, wave propagation and polarization, transmission lines and waveguides, and more. Coverage includes: • An introduction to electromagnetic fields and waves • Transmission lines and wave equations • Transition to electrostatics • Electrostatic fields, electric flux, and Gauss’ law • Electric force, field, energy, and potential • Materials: conductors and dielectrics • Poisson’s and Laplace’s equations • Uniqueness theorem and graphical and numerical solutions • Magnetic fields and flux • Magnetic materials, magnetic circuits, and inductance • Time-varying fields and Faraday’s law • Wave propagation: plane waves • Wave polarization and propagation in multiple layers • Waveguides and cavity resonators • Historical review of EM scientists


Electromagnetics, Volume 1 (BETA)

Electromagnetics, Volume 1 (BETA)

Author: Steven W. Ellingson

Publisher: VT Publishing

Published: 2018-01-03

Total Pages: 208

ISBN-13: 9780997920123

DOWNLOAD EBOOK

Electromagnetics (CC BY-SA 4.0) is an open textbook intended to serve as a primary textbook for a one-semester first course in undergraduate engineering electromagnetics, and includes:electric and magnetic fields; electromagnetic properties of materials; electromagnetic waves; and devices that operate according to associated electromagnetic principles including resistors,capacitors, inductors, transformers, generators, and transmission lines. This book employs the "transmission lines first" approach, in which transmission lines are introduced using a lumped-element equivalent circuit model fora differential length of transmission line, leading to one-dimensional wave equations for voltage and current. This book is intended for electrical engineering students in the third year of a bachelor of science degree program. A free electronic version of this book is available at: https://doi.org/10.7294/W4WQ01ZM


Fundamentals of Electromagnetics with Engineering Applications

Fundamentals of Electromagnetics with Engineering Applications

Author: Stuart M. Wentworth

Publisher: Wiley

Published: 2006-07-12

Total Pages: 608

ISBN-13: 9780470105757

DOWNLOAD EBOOK

With the rapid growth of wireless technologies, more and more people are trying to gain a better understanding of electromagnetics. After all, electromagnetic fields have a direct impact on reception in all wireless applications. This text explores electromagnetics, presenting practical applications for wireless systems, transmission lines, waveguides, antennas, electromagnetic interference, and microwave engineering. It is designed for use in a one- or two-semester electromagnetics sequence for electrical engineering students at the junior and senior level. The first book on the subject to tackle the impact of electromagnetics on wireless applications: Includes numerous worked-out example problems that provide you with hands-on experience in solving electromagnetic problems. Describes a number of practical applications that show how electromagnetic theory is put into practice. Offers a concise summary at the end of each chapter that reinforces the key points. Detailed MATLAB examples are integrated throughout the book to enhance the material.


Electromagnetic Fields in Electrical Engineering

Electromagnetic Fields in Electrical Engineering

Author: A. Savini

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 306

ISBN-13: 146130721X

DOWNLOAD EBOOK

This book is the collection of the contributions offered at the International Symposium on Electromagnetic Fields in Electrical Engineering, ISEF '87, held in Pavia, Italy, in September 1987. The Symposium was attended by specialists engaged in both theoretical and applied research in low-frequency electromagnetism. The charming atmosphere of Pavia and its ancient university provided a very effective environment to discuss the latest results in the field and, at the same time, to enjoy the company or colleagues and friends coming from over 15 countries. The contributions have been grouped into 7 chapters devoted to fundamental problems, computer programs, transformers, rotating electrical machines, mechanical and thermal effects, various applications and synthesis, respectively. Such a classification is merely to help the reader because a few papers could be put in several chapters. Over the past two decades electromagnetic field computations have received a big impulse by the large availability of digital computers with better and better performances in speed and capacity. Many various methods have been developed but not all of them appear convenient enough for practical engineering use. In fact, the technical and industrial challenges set some principal attributes and criteria for good computation methods. They should be relatively easy to use, fit into moderately sized computers, yield useful design data, maintain flexibility with m1n1mum cost in time and effort.


Fundamentals of Engineering Electromagnetics

Fundamentals of Engineering Electromagnetics

Author: Sunil Bhooshan

Publisher: OUP India

Published: 2012-07-12

Total Pages: 0

ISBN-13: 9780198077947

DOWNLOAD EBOOK

Fundamentals of Engineering Electromagnetics is designed for an undergraduate course in electromagnetism for students of electrical and electronics and communication engineering. The book aims to provide students with understanding of the fundamentals of electromagnetic fields and their applications in electrical engineering and related domains.


Engineering Electromagnetics

Engineering Electromagnetics

Author: Nathan Ida

Publisher: Springer

Published: 2015-03-20

Total Pages: 1062

ISBN-13: 3319078062

DOWNLOAD EBOOK

This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems and summaries. The new edition includes: modifications to about 30-40% of the end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The wealth of examples and alternative explanations makes it very approachable by students. More than 400 examples and exercises, exercising every topic in the book Includes 600 end-of-chapter problems, many of them applications or simplified applications Discusses the finite element, finite difference and method of moments in a dedicated chapter