Fundamentals of Advanced Mathematics V2

Fundamentals of Advanced Mathematics V2

Author: Henri Bourles

Publisher: Elsevier

Published: 2018-02-03

Total Pages: 362

ISBN-13: 0081023855

DOWNLOAD EBOOK

The three volumes of this series of books, of which this is the second, put forward the mathematical elements that make up the foundations of a number of contemporary scientific methods: modern theory on systems, physics and engineering. Whereas the first volume focused on the formal conditions for systems of linear equations (in particular of linear differential equations) to have solutions, this book presents the approaches to finding solutions to polynomial equations and to systems of linear differential equations with varying coefficients. Fundamentals of Advanced Mathematics, Volume 2: Field Extensions, Topology and Topological Vector Spaces, Functional Spaces, and Sheaves begins with the classical Galois theory and the theory of transcendental field extensions. Next, the differential side of these theories is treated, including the differential Galois theory (Picard-Vessiot theory of systems of linear differential equations with time-varying coefficients) and differentially transcendental field extensions. The treatment of analysis includes topology (using both filters and nets), topological vector spaces (using the notion of disked space, which simplifies the theory of duality), and the radon measure (assuming that the usual theory of measure and integration is known). In addition, the theory of sheaves is developed with application to the theory of distributions and the theory of hyperfunctions (assuming that the usual theory of functions of the complex variable is known). This volume is the prerequisite to the study of linear systems with time-varying coefficients from the point-of-view of algebraic analysis and the algebraic theory of nonlinear systems. - Present Galois Theory, transcendental field extensions, and Picard - Includes sections on Vessiot theory, differentially transcendental field extensions, topology, topological vector spaces, Radon measure, differential calculus in Banach spaces, sheaves, distributions, hyperfunctions, algebraic analysis, and local analysis of systems of linear differential equations


Fundamentals of Advanced Mathematics 1

Fundamentals of Advanced Mathematics 1

Author: Henri Bourles

Publisher: Elsevier

Published: 2017-07-10

Total Pages: 270

ISBN-13: 0081021127

DOWNLOAD EBOOK

This precis, comprised of three volumes, of which this book is the first, exposes the mathematical elements which make up the foundations of a number of contemporary scientific methods: modern theory on systems, physics and engineering. This first volume focuses primarily on algebraic questions: categories and functors, groups, rings, modules and algebra. Notions are introduced in a general framework and then studied in the context of commutative and homological algebra; their application in algebraic topology and geometry is therefore developed. These notions play an essential role in algebraic analysis (analytico-algebraic systems theory of ordinary or partial linear differential equations). The book concludes with a study of modules over the main types of rings, the rational canonical form of matrices, the (commutative) theory of elemental divisors and their application in systems of linear differential equations with constant coefficients. - Part of the New Mathematical Methods, Systems, and Applications series - Presents the notions, results, and proofs necessary to understand and master the various topics - Provides a unified notation, making the task easier for the reader. - Includes several summaries of mathematics for engineers


Advanced Calculus (Revised Edition)

Advanced Calculus (Revised Edition)

Author: Lynn Harold Loomis

Publisher: World Scientific Publishing Company

Published: 2014-02-26

Total Pages: 595

ISBN-13: 9814583952

DOWNLOAD EBOOK

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.


Advanced Problems in Mathematics

Advanced Problems in Mathematics

Author: Stephen Siklos

Publisher:

Published: 2019-10-16

Total Pages: 188

ISBN-13: 9781783747764

DOWNLOAD EBOOK

This new and expanded edition is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge Colleges for conditional offers in mathematics. They are also used by some other UK universities and many mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics bridges the gap between school and university mathematics, and prepares students for an undergraduate mathematics course. The questions analysed in this book are all based on past STEP questions and each question is followed by a comment and a full solution. The comments direct the reader's attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anyone interested in advanced mathematics.


Ergodic Theory

Ergodic Theory

Author: Karl E. Petersen

Publisher: Cambridge University Press

Published: 1989-11-23

Total Pages: 348

ISBN-13: 9780521389976

DOWNLOAD EBOOK

The study of dynamical systems forms a vast and rapidly developing field even when one considers only activity whose methods derive mainly from measure theory and functional analysis. Karl Petersen has written a book which presents the fundamentals of the ergodic theory of point transformations and then several advanced topics which are currently undergoing intense research. By selecting one or more of these topics to focus on, the reader can quickly approach the specialized literature and indeed the frontier of the area of interest. Each of the four basic aspects of ergodic theory - examples, convergence theorems, recurrence properties, and entropy - receives first a basic and then a more advanced, particularized treatment. At the introductory level, the book provides clear and complete discussions of the standard examples, the mean and pointwise ergodic theorems, recurrence, ergodicity, weak mixing, strong mixing, and the fundamentals of entropy. Among the advanced topics are a thorough treatment of maximal functions and their usefulness in ergodic theory, analysis, and probability, an introduction to almost-periodic functions and topological dynamics, a proof of the Jewett-Krieger Theorem, an introduction to multiple recurrence and the Szemeredi-Furstenberg Theorem, and the Keane-Smorodinsky proof of Ornstein's Isomorphism Theorem for Bernoulli shifts. The author's easily-readable style combined with the profusion of exercises and references, summaries, historical remarks, and heuristic discussions make this book useful either as a text for graduate students or self-study, or as a reference work for the initiated.


System Theory -- A Modern Approach, Volume 1

System Theory -- A Modern Approach, Volume 1

Author: Henri Bourles

Publisher: John Wiley & Sons

Published: 2024-07-11

Total Pages: 324

ISBN-13: 1786309858

DOWNLOAD EBOOK

The theory of dynamic systems is addressed in this book in accordance with the “modern” approach, heir to algebraic analysis, which has been implemented since the last decade of the 20th century. After a reminder of the evolution of the representation of systems based on transfer functions or matrices, the duality of controllability and observability is revisited, and new results are produced concerning time-varying discrete-time systems. To complete and improve the existing analyses, the poles and zeros of linear systems and their interconnections are presented in a new way, as well as the problem of systems governed by functional differential equations (of retarded or neutral type) and their stabilization. This book also proposes known and original mathematical complements.


Advanced Engineering Mathematics

Advanced Engineering Mathematics

Author: Merle C. Potter

Publisher: Springer

Published: 2019-06-14

Total Pages: 753

ISBN-13: 3030170683

DOWNLOAD EBOOK

This book is designed to serve as a core text for courses in advanced engineering mathematics required by many engineering departments. The style of presentation is such that the student, with a minimum of assistance, can follow the step-by-step derivations. Liberal use of examples and homework problems aid the student in the study of the topics presented. Ordinary differential equations, including a number of physical applications, are reviewed in Chapter One. The use of series methods are presented in Chapter Two, Subsequent chapters present Laplace transforms, matrix theory and applications, vector analysis, Fourier series and transforms, partial differential equations, numerical methods using finite differences, complex variables, and wavelets. The material is presented so that four or five subjects can be covered in a single course, depending on the topics chosen and the completeness of coverage. Incorporated in this textbook is the use of certain computer software packages. Short tutorials on Maple, demonstrating how problems in engineering mathematics can be solved with a computer algebra system, are included in most sections of the text. Problems have been identified at the end of sections to be solved specifically with Maple, and there are computer laboratory activities, which are more difficult problems designed for Maple. In addition, MATLAB and Excel have been included in the solution of problems in several of the chapters. There is a solutions manual available for those who select the text for their course. This text can be used in two semesters of engineering mathematics. The many helpful features make the text relatively easy to use in the classroom.


Mathematics and Philosophy

Mathematics and Philosophy

Author: Daniel Parrochia

Publisher: John Wiley & Sons

Published: 2018-05-24

Total Pages: 292

ISBN-13: 1119528070

DOWNLOAD EBOOK

This book, which studies the links between mathematics and philosophy, highlights a reversal. Initially, the (Greek) philosophers were also mathematicians (geometers). Their vision of the world stemmed from their research in this field (rational and irrational numbers, problem of duplicating the cube, trisection of the angle...). Subsequently, mathematicians freed themselves from philosophy (with Analysis, differential Calculus, Algebra, Topology, etc.), but their researches continued to inspire philosophers (Descartes, Leibniz, Hegel, Husserl, etc.). However, from a certain level of complexity, the mathematicians themselves became philosophers (a movement that begins with Wronsky and Clifford, and continues until Grothendieck).