Fundamentals and Applications of Complex Analysis

Fundamentals and Applications of Complex Analysis

Author: Harold Cohen

Publisher: Springer Science & Business Media

Published: 2003-07-31

Total Pages: 442

ISBN-13: 9780306477485

DOWNLOAD EBOOK

This book is intended to serve as a text for first and second year courses in single variable complex analysis. The material that is appropriate for more advanced study is developed from elementary material. The concepts are illustrated with large numbers of examples, many of which involve problems students encounter in other courses. For example, students who have taken an introductory physics course will have encountered analysis of simple AC circuits. This text revisits such analysis using complex numbers. Cauchy's residue theorem is used to evaluate many types of definite integrals that students are introduced to in the beginning calculus sequence. Methods of conformal mapping are used to solve problems in electrostatics. The book contains material that is not considered in other popular complex analysis texts.


Fundamentals of Complex Analysis with Applications to Engineering and Science (Classic Version)

Fundamentals of Complex Analysis with Applications to Engineering and Science (Classic Version)

Author: Edward Saff

Publisher: Pearson

Published: 2017-02-13

Total Pages: 0

ISBN-13: 9780134689487

DOWNLOAD EBOOK

This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. This is the best seller in this market. It provides a comprehensive introduction to complex variable theory and its applications to current engineering problems. It is designed to make the fundamentals of the subject more easily accessible to students who have little inclination to wade through the rigors of the axiomatic approach. Modeled after standard calculus books--both in level of exposition and layout--it incorporates physical applications throughout the presentation, so that the mathematical methodology appears less sterile to engineering students.


Complex Analysis with Applications in Science and Engineering

Complex Analysis with Applications in Science and Engineering

Author: Harold Cohen

Publisher: Springer Science & Business Media

Published: 2010-04-23

Total Pages: 487

ISBN-13: 0387730583

DOWNLOAD EBOOK

The Second Edition of this acclaimed text helps you apply theory to real-world applications in mathematics, physics, and engineering. It easily guides you through complex analysis with its excellent coverage of topics such as series, residues, and the evaluation of integrals; multi-valued functions; conformal mapping; dispersion relations; and analytic continuation. Worked examples plus a large number of assigned problems help you understand how to apply complex concepts and build your own skills by putting them into practice. This edition features many new problems, revised sections, and an entirely new chapter on analytic continuation.


Complex Analysis with Applications to Number Theory

Complex Analysis with Applications to Number Theory

Author: Tarlok Nath Shorey

Publisher: Springer Nature

Published: 2020-11-13

Total Pages: 287

ISBN-13: 9811590974

DOWNLOAD EBOOK

The book discusses major topics in complex analysis with applications to number theory. This book is intended as a text for graduate students of mathematics and undergraduate students of engineering, as well as to researchers in complex analysis and number theory. This theory is a prerequisite for the study of many areas of mathematics, including the theory of several finitely and infinitely many complex variables, hyperbolic geometry, two and three manifolds and number theory. In additional to solved examples and problems, the book covers most of the topics of current interest, such as Cauchy theorems, Picard’s theorems, Riemann–Zeta function, Dirichlet theorem, gamma function and harmonic functions.


A Course in Complex Analysis

A Course in Complex Analysis

Author: Wolfgang Fischer

Publisher: Springer Science & Business Media

Published: 2011-10-21

Total Pages: 280

ISBN-13: 3834886610

DOWNLOAD EBOOK

This carefully written textbook is an introduction to the beautiful concepts and results of complex analysis. It is intended for international bachelor and master programmes in Germany and throughout Europe; in the Anglo-American system of university education the content corresponds to a beginning graduate course. The book presents the fundamental results and methods of complex analysis and applies them to a study of elementary and non-elementary functions (elliptic functions, Gamma- and Zeta function including a proof of the prime number theorem ...) and – a new feature in this context! – to exhibiting basic facts in the theory of several complex variables. Part of the book is a translation of the authors’ German text “Einführung in die komplexe Analysis”; some material was added from the by now almost “classical” text “Funktionentheorie” written by the authors, and a few paragraphs were newly written for special use in a master’s programme.


Fundamentals of Complex Analysis

Fundamentals of Complex Analysis

Author: K. K. Dube

Publisher: I. K. International Pvt Ltd

Published: 2013-12-30

Total Pages: 293

ISBN-13: 9380026021

DOWNLOAD EBOOK

The book divided in ten chapters deals with: " Algebra of complex numbers and its various geometrical properties, properties of polar form of complex numbers and regions in the complex plane. " Limit, continuity, differentiability. " Different kinds of complex valued functions. " Different types of transformations. " Conformal mappings of different functions. " Properties of bilinear and special bilinear transformation. " Line integrals, their properties and different theorems. " Sequences and series, Power series, Zero s of functions, residues and residue theorem, meromorphic functions, different kinds of singularities. " Evaluation of real integrals. " Analytic continuation, construction of harmonic functions, infinite product, their properties and Gamma function. " Schwarz-Christoffel transformations, mapping by multi valued functions, entire functions. " Jenson s theorem and Poisson-Jenson theorem. The book is designed as a textbook for UG and PG students of science as well as engineering


Complex Analysis

Complex Analysis

Author: Elias M. Stein

Publisher: Princeton University Press

Published: 2010-04-22

Total Pages: 398

ISBN-13: 1400831156

DOWNLOAD EBOOK

With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.


Introductory Functional Analysis with Applications

Introductory Functional Analysis with Applications

Author: Erwin Kreyszig

Publisher: John Wiley & Sons

Published: 1991-01-16

Total Pages: 706

ISBN-13: 0471504599

DOWNLOAD EBOOK

KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry


Invitation to Complex Analysis

Invitation to Complex Analysis

Author: Ralph Philip Boas

Publisher:

Published: 1987

Total Pages: 376

ISBN-13:

DOWNLOAD EBOOK

Ideal for a first course in complex analysis, this book can be used either as a classroom text or for independent study. Written at a level accessible to advanced undergraduates and beginning graduate students, the book is suitable for readers acquainted with advanced calculus or introductory real analysis. The treatment goes beyond the standard material of power series, Cauchy's theorem, residues, conformal mapping, and harmonic functions by including accessible discussions of intriguing topics that are uncommon in a book at this level. The flexibility afforded by the supplementary topics and applications makes the book adaptable either to a short, one-term course or to a comprehensive, full-year course. Detailed solutions of the exercises both serve as models for students and facilitate independent study. Supplementary exercises, not solved in the book, provide an additional teaching tool.


The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra

Author: Benjamin Fine

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 220

ISBN-13: 1461219280

DOWNLOAD EBOOK

The fundamental theorem of algebra states that any complex polynomial must have a complex root. This book examines three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. The first proof in each pair is fairly straightforward and depends only on what could be considered elementary mathematics. However, each of these first proofs leads to more general results from which the fundamental theorem can be deduced as a direct consequence. These general results constitute the second proof in each pair. To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. In addition to the proofs and techniques themselves, many applications such as the insolvability of the quintic and the transcendence of e and pi are presented. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof. The book is intended for junior/senior level undergraduate mathematics students or first year graduate students, and would make an ideal "capstone" course in mathematics.