Adsorption of Molecules at Metal Electrodes

Adsorption of Molecules at Metal Electrodes

Author: Jacek Lipkowski

Publisher: New York : VCH

Published: 1992

Total Pages: 440

ISBN-13:

DOWNLOAD EBOOK

Summarizes the past ten years in the field with papers by physicists, chemists, experimentalists, and theorists. Subjects covered include molecular models of organic adsorption at metal-water interfaces, adsorption and two-dimensional phase transitions at electrode surfaces, molecular adsorption at


Adsorption of Organic Compounds on Electrodes

Adsorption of Organic Compounds on Electrodes

Author: Boris Damaskin

Publisher: Springer

Published: 1971

Total Pages: 524

ISBN-13:

DOWNLOAD EBOOK

The systematic study of the adsorption of organic compounds on electrodes began with the comprehensive survey of adsorption on mercury carried out by Gouy in the first decade of this century. His studies with the capillary electrometer are still useful but do not lend themselves to detailed quantitative analysis. A more de tailed study of a few systems by Frumkin in his thesis (1919) led him to propose a quantitative phenomenological theory of organic adsorption (1925, 1926) at almost the same time as Stern proposed the model of the electrical double layer which remains the picture accepted in general terms today. The attempt at a molecular model made by Butler (1929) should be more satisfying but up to the pres ent the formidable difficulties of a molecular theory of interfacial phenomena have prevented the full interpretation of experimental results along these lines. In his work with Proskurnin (1935), Frumkin is also respon sible for the major experimental advance in the demonstration that reliable measurements of the capacity of an electrode-solution interface can be obtained provided that the work is carried out under conditions of scrupulous cleanliness. Even so, preCise mea surements of double layer capacities were not obtained until Grahame (1941) showed how convenient and reliable the dropping mercury electrode was the for these studies. This method and the hanging drop electrode remain the preferred methods for study of adsorp tion on mercury. Solid electrodes present a more difficult problem.


Catalysis in Electrochemistry

Catalysis in Electrochemistry

Author: Elizabeth Santos

Publisher: John Wiley & Sons

Published: 2011-10-18

Total Pages: 548

ISBN-13: 0470934735

DOWNLOAD EBOOK

Catalysis in Electrochemistry: From Fundamental Aspects to Strategies for Fuel Cell Development is a modern, comprehensive reference work on catalysis in electrochemistry, including principles, methods, strategies, and applications. It points out differences between catalysis at gas/surfaces and electrochemical interfaces, along with the future possibilities and impact of electrochemical science on energy problems. This book contributes both to fundamental science; experience in the design, preparation, and characterization of electrocatalytic materials; and the industrial application of electrocatalytic materials for electrochemical reactions. This is an essential resource for scientists globally in academia, industry, and government institutions.


Electrochemical and Spectroscopic Interfacial Investigations of Small Organic Molecule Electrooxidation on Platinum Electrodes

Electrochemical and Spectroscopic Interfacial Investigations of Small Organic Molecule Electrooxidation on Platinum Electrodes

Author: Rachel L. Behrens

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

In support of the recent interest in fuels from renewable resources for fuel cells, the intermediates of the oxidation of formic acid and ethanol to CO2 on platinum electrodes have been examined. The adsorbed carbon monoxide intermediate continues to be the cause for a decrease in efficiency and activity for platinum electrodes and is the leading surface poison (intermediate) in the most common oxidation reactions. We have studied the CO species generated from both fuel and CO-saturated media to observe site conversion of the CO species on polycrystalline platinum and platinum single crystal surfaces with respect to concentration, composition of electrolyte, and potential with electrochemical techniques and broad-band sum frequency generation spectroscopy (BB-SFG). In situ BB-SFG allows for the chemical analysis of electrode surfaces to examine details of surface electrochemical reactions. SFG is based on a second order nonlinear optical process that is forbidden in centrosymmetric media. Therefore, SFG is intrinsically interface-sensitive and enables surface chemical measurements without contribution from the bulk. With the aid of a femtosecond IR laser, we probe vibrational transitions of adsorbates in real time on the electrode surface as the potential at the surface is scanned at rates up to 5 mV/s. Studies of CO species, other reaction intermediates, and adsorbates will be discussed in relation to their poisoning of catalysis by single crystal Pt electrodes. These experiments demonstrate the sensitivity of the BB-SFG technique to the adsorbed species, and its capability to examine adsorption site conversions of the species on the electrode surface. In formic acid fuel solution, in situ BB-SFG was used to obtain vibrational spectra of CO adsorbates produced from formic acid oxidation on a Pt(100) electrode in sulfuric acid and perchloric acid media. The BB-SFG simultaneously monitored all forms of the CO intermediates, including steady-state, as the potential was scanned at 5 mV/s. Spectra were compared to those obtained from CO adsorbed from a CO-saturated electrolyte. While adsorbed from HCOOH, CO had a sharp atop transition near 2050 cm-1 and a broader multiply-bonded transitions in the 1700-1900 cm-1 range, which appear to result from bridge-like and higher-coordinated (possibly fourfold) CO. As the potential was scanned from -0.2 to 0.3 V (vs. Ag/AgCl), the bridge-like CO disappeared and the amount of atop CO increased. At potentials above 0.5 V, CO was in steady-state, being oxidized on the surface to CO2 and replenished by CO from HCOOH. These measurements show that BB-SFG can observe potential-dependent interconversion of different CO forms on the electrode surface and can measure steady-state reaction intermediates on a surface in real time. In situ BB-SFG was also employed to study ethanol on platinum electrodes as a means to elucidate the mechanism of this reaction on catalyst surfaces for fuel cell applications. Recently, the interest in ethanol has increased, not only as a renewable resource, but especially as a fuel source due to its high theoretical yield of 12 electrons released upon complete oxidation. Incomplete oxidation, a major setback with ethanol oxidation, forms byproducts and intermediates slowing the oxidation reaction or prohibiting it from occurring further. Among the byproducts are acetic acid and acetaldehyde, where the C-C bond is not yet broken, or the intermediate CO, where the C-C bond has been broken and is further oxidized to CO2. Using simultaneous electrochemical techniques and broad-band sum frequency generation, these byproducts and intermediates formed on platinum electrodes will be discussed in both acidic and basic media, as a function of electrolyte composition and ethanol concentration.


Silicene

Silicene

Author: Michelle Spencer

Publisher: Springer

Published: 2016-02-19

Total Pages: 283

ISBN-13: 3319283448

DOWNLOAD EBOOK

This book reviews the current state-of-the art of single layer silicene up to thicker silicon nanosheets, and their structure, properties and potential applications. Silicene is a newly discovered material that is one atomic layer think. It is a two-dimensional (2D) nanomaterial that is classified as a nanosheet, which has large lateral dimensions up to micrometres, but thicknesses of only nanometres or less. Silicon nanosheets are currently a very ‘hot’ area of research. The unique properties and morphology of such materials make them ideal for a variety of applications, including electronic devices, batteries and sensors. 2D nanosheets of silicon can be considered as analogues of graphene. As silicon is already the major component of electronic devices, the significance of nanosheets composed of silicon is that they can be more easily integrated into existing electronic devices. Furthermore, if 2D nanostructured Si can be implemented into such devices, then their size could be reduced into the nano-regime, providing unique properties different from bulk Si that is currently employed. The book is written for researchers and graduate students.


Oxide Surfaces

Oxide Surfaces

Author:

Publisher: Elsevier

Published: 2001-05-21

Total Pages: 677

ISBN-13: 0080538312

DOWNLOAD EBOOK

The book is a multi-author survey (in 15 chapters) of the current state of knowledge and recent developments in our understanding of oxide surfaces. The author list includes most of the acknowledged world experts in this field. The material covered includes fundamental theory and experimental studies of the geometrical, vibrational and electronic structure of such surfaces, but with a special emphasis on the chemical properties and associated reactivity. The main focus is on metal oxides but coverage extends from 'simple' rocksalt materials such as MgO through to complex transition metal oxides with different valencies.