A Method for Studying Model Hamiltonians

A Method for Studying Model Hamiltonians

Author: N. N. Bogolyubov

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 181

ISBN-13: 1483148777

DOWNLOAD EBOOK

A Method for Studying Model Hamiltonians: A Minimax Principle for Problems in Statistical Physics centers on methods for solving certain problems in statistical physics which contain four-fermion interaction. Organized into four chapters, this book begins with a presentation of the proof of the asymptotic relations for the many-time correlation functions. Chapter 2 details the construction of a proof of the generalized asymptotic relations for the many-time correlation averages. Chapter 3 explains the correlation functions for systems with four-fermion negative interaction. The last chapter shows the model systems with positive and negative interaction components.


Plasma Electrodynamics

Plasma Electrodynamics

Author: A. I. Akhiezer

Publisher: Elsevier

Published: 2017-03-22

Total Pages: 433

ISBN-13: 1483152154

DOWNLOAD EBOOK

Plasma Electrodynamics, Volume 1: Linear Theory is a seven-chapter book that begins with a description of the general methods of describing plasma, particularly, kinetic and hydrodynamic methods. Chapter 2 discusses the linear theory of magneto-hydrodynamic waves. Chapter 3 describes the non-linear magneto-hydrodynamic waves, both simple waves and shock waves. Subsequent chapters explain the high-frequency oscillations in an unmagnetized plasma; oscillations of a plasma in a magnetic field; and interaction between charged particle beams and a plasma. The last chapter details the oscillations of a partially ionized plasma.


Mechanics

Mechanics

Author: T. T. Taylor

Publisher: Elsevier

Published: 2016-10-13

Total Pages: 412

ISBN-13: 1483139980

DOWNLOAD EBOOK

Mechanics: Classical and Quantum is a 13-chapter book that begins by explaining the Lagrangian and Hamiltonian formulation of mechanics. The Hamilton-Jacobi theory, historical background of the quantum theory, and wave mechanics are then described. Subsequent chapters discuss the time-independent Schrödinger equation and some of its applications; the operators, observables, and the quantization of a physical system; the significance of expectation values; and the concept of measurement in quantum mechanics. The matrix mechanics and the "hydrogenic atom", an atom in which one electron moves under the influence of a nucleus of charge that, to a very good approximation, can be thought of as a point, are also presented. This book will be very useful to students studying this field of interest.


Measurements and Time Reversal in Objective Quantum Theory

Measurements and Time Reversal in Objective Quantum Theory

Author: F. J. Belinfante

Publisher: Elsevier

Published: 2016-02-09

Total Pages: 163

ISBN-13: 1483155064

DOWNLOAD EBOOK

Measurements and Time Reversal in Objective Quantum Theory is a three-chapter book that begins with a discussion on the fundamentals of conventional quantum theory. The second chapter focuses on the time arrow of quantum theory. It specifically presents a schematized account of the results of an interesting paper on time reversal in quantum theory published by Aharonov, Bergmann, and Lebowitz. The last chapter presents the authors' conclusions and additional comments in this field. This book will be valuable to students of wave mechanics and will serve as a supplement to textbooks, which fail to present an appropriate discussion of these matters.


Modern Particle Physics

Modern Particle Physics

Author: Mark Thomson

Publisher:

Published: 2013

Total Pages: 825

ISBN-13: 1107289777

DOWNLOAD EBOOK

"Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book"--


Lectures on Solid State Physics

Lectures on Solid State Physics

Author: Georg Busch

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 555

ISBN-13: 1483157539

DOWNLOAD EBOOK

Lectures on Solid State Physics is a compilation of lectures concerned with various branches of solid state physics. It aims to develop basic physical ideas that lead to a better understanding of phenomena and effects. Comprised of 11 chapters, this book discusses several topics on solid state physics: structure of solids; interference effects in crystals; lattice dynamics; perfect and imperfect crystals; electrons and electron theory of metals; semiconductors; electrical contact effects; transport phenomena, and magnetism. Students, physics graduates, electrical engineers, chemists, and metallurgists will find this book invaluable.


Nuclear Physics

Nuclear Physics

Author: M. G. Bowler

Publisher: Elsevier

Published: 2013-09-11

Total Pages: 433

ISBN-13: 1483151751

DOWNLOAD EBOOK

Nuclear Physics is concerned primarily with low-energy nuclear physics rather than high-energy or elementary particle physics, although examples from particle physics are used where appropriate. The Fermi Golden Rule is given emphasis throughout. This text consists of six chapters and begins with an introduction to nuclear physics, followed by a discussion on nuclear structure at a fairly basic level. This book also discusses the nuclear periodic table, radioactivity, and unstable nuclear states as well as nuclear mass and nuclear binding energy. Spin and static electric and magnetic moments are then examined from the perspective of quantum mechanics rather than through the vector model of angular momentum. Quantum mechanics is also used to treat nuclear decay in the next chapter. The theory of nuclear reactions is discussed by highlighting the concepts of cross-section and resonance. The penultimate chapter deals with self-sustaining nuclear reactions, with particular reference to the nuclear physics of fission reactors and the nuclear aspects of stellar physics. This chapter ends with the application of the theory of thermonuclear reactions to the design of a thermonuclear power plant. The final chapter is devoted to charge independence and isospin in low-energy nuclear physics.


Theory of Intermolecular Forces

Theory of Intermolecular Forces

Author: H. Margenau

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 413

ISBN-13: 1483151700

DOWNLOAD EBOOK

Theory of Intermolecular Forces deals with the exposition of the principles and techniques of the theory of intermolecular forces. The text focuses on the basic theory and surveys other aspects, with particular attention to relevant experiments. The initial chapters introduce the reader to the history of intermolecular forces. Succeeding chapters present topics on short, intermediate, and long range atomic interactions; properties of Coulomb interactions; shape-dependent forces between molecules; and physical adsorption. The book will be of good use to experts and students of quantum mechanics and advanced physical chemistry.