Fundamental Physics of Radiology

Fundamental Physics of Radiology

Author: W. J. Meredith

Publisher: Butterworth-Heinemann

Published: 2013-10-22

Total Pages: 719

ISBN-13: 1483284352

DOWNLOAD EBOOK

Fundamental Physics of Radiology, Third Edition provides a general introduction to the methods involving radioactive isotopes and ultrasonic radiations. This book provides the fundamental principles upon which the clinical uses of radioactive isotopes and ultrasonic radiation depend. Organized into four sections encompassing 45 chapters, this edition begins with an overview of the basic facts about matter and energy. This text then examines the technical details of some practical X-ray tubes. Other chapters consider the action of the X-rays on the screen to produce an emission of visible light photons in amount proportional to the incident X-ray intensity. This book discusses as well the fundamental aspects of the physical principles of radiotherapy, in which most attention is being given to gamma- and X-rays. The final chapter deals with the provision of adequate barriers and protective devices to guarantee the safety of the workers concerned. This book is a valuable resource for radiologists, physicists, and scientists.


Fundamental Physics of Radiology

Fundamental Physics of Radiology

Author: W. J. Meredith

Publisher: Butterworth-Heinemann

Published: 2013-10-22

Total Pages: 608

ISBN-13: 148328137X

DOWNLOAD EBOOK

Fundamental Physics of Radiology focuses on how radiation is produced, how the rays interact and affect irradiated material, and the principles underlying the apparatus being used. The publication first takes a look at matter and energy, radiation, and spectra, atoms and nuclei, and radioactivity, including electromagnetic radiation, waves and photons, atomic and nuclear structures, and electromagnetic spectrum. The text also ponders on radioactive materials and the effects and production of X-rays. The text examines the measurement of X-ray quantity, roentgen and its measurement, and the Geiger-Müller and scintillation counters, as well as departmental chambers, instruments in practice, and 'free-air' chamber. The manuscript also elaborates on properties of X-ray film, intensifying and fluorescent screens, effect of X-ray absorption on radiographic image, and effects and control of scattered radiation. The publication is a dependable reference for physicists and readers interested in radiology.


The Essential Physics of Medical Imaging

The Essential Physics of Medical Imaging

Author: Jerrold T. Bushberg

Publisher: Lippincott Williams & Wilkins

Published: 2011-12-28

Total Pages: 1049

ISBN-13: 1451153945

DOWNLOAD EBOOK

This renowned work is derived from the authors' acclaimed national review course (“Physics of Medical Imaging") at the University of California-Davis for radiology residents. The text is a guide to the fundamental principles of medical imaging physics, radiation protection and radiation biology, with complex topics presented in the clear and concise manner and style for which these authors are known. Coverage includes the production, characteristics and interactions of ionizing radiation used in medical imaging and the imaging modalities in which they are used, including radiography, mammography, fluoroscopy, computed tomography and nuclear medicine. Special attention is paid to optimizing patient dose in each of these modalities. Sections of the book address topics common to all forms of diagnostic imaging, including image quality and medical informatics as well as the non-ionizing medical imaging modalities of MRI and ultrasound. The basic science important to nuclear imaging, including the nature and production of radioactivity, internal dosimetry and radiation detection and measurement, are presented clearly and concisely. Current concepts in the fields of radiation biology and radiation protection relevant to medical imaging, and a number of helpful appendices complete this comprehensive textbook. The text is enhanced by numerous full color charts, tables, images and superb illustrations that reinforce central concepts. The book is ideal for medical imaging professionals, and teachers and students in medical physics and biomedical engineering. Radiology residents will find this text especially useful in bolstering their understanding of imaging physics and related topics prior to board exams.


Textbook of Radiology Physics

Textbook of Radiology Physics

Author: Hariqbal Singh

Publisher: JP Medical Ltd

Published: 2016-05-31

Total Pages: 177

ISBN-13: 9385891308

DOWNLOAD EBOOK

This book provides a concise overview of the field of radiology physics and its application in everyday practice. Beginning with an introduction to the fundamental concepts and the basics of radiation, the following sections review different techniques, from X-Ray production and ultrasound, to Doppler, mammography, computed tomography, and nuclear medicine procedures. Further topics include complex magnetic resonance concepts, radiation exposure monitoring, single-photon emission computed tomography, and positron emission tomography. Enhanced by radiological images and illustrations, each chapter explains the principles, function, application and limitations of the radiological technique in question. Key points Concise review of the field of radiology physics Covers complete range of radiology techniques, from basic to more complex Principles, function, application and limitations of each technique explained in detail Includes radiological images and illustrations to enhance learning


Christensen's Physics of Diagnostic Radiology

Christensen's Physics of Diagnostic Radiology

Author: Thomas S. Curry

Publisher: Lippincott Williams & Wilkins

Published: 1990

Total Pages: 544

ISBN-13: 9780812113105

DOWNLOAD EBOOK

The Fourth Edition of this text provides a clear understanding of the physics principles essential to getting maximum diagnostic value from the full range of current and emerging imaging technologies. Updated material added in areas such as x-ray generators (solid-state devices), xerography (liquid toner), CT scanners (fast-imaging technology) and ultrasound (color Doppler).


Selman's The Fundamentals of Imaging Physics and Radiobiology

Selman's The Fundamentals of Imaging Physics and Radiobiology

Author: Victor White

Publisher: Charles C Thomas Publisher

Published: 2020-10-16

Total Pages: 610

ISBN-13: 0398093180

DOWNLOAD EBOOK

This tenth edition of Selman’s The Fundamentals of Imaging Physics and Radiobiology is the continuation of a seminal work in radiation physics and radiation biology first published by Joseph Selman, MD, in 1954 by Charles C Thomas, Publisher, Ltd., Springfield, IL. Many significant changes have been made in this tenth edition. Color photographs and new illustrations have been provided for several existing chapters and for the new chapters in this book. Revisions and updates have been completed for Chapters 1 through 28, whereas Chapters 29 to 33 are all new. The overall style of Doctor Selman is still present, but, with any revision, the style of the present author is also present. In essence, the author’s raison d’être in revising this book was to better reflect current radiology practice and to honor the work of Doctor Selman. Topics discussed in this textbook deal with the physics of x-radiation, the biological interaction of radiation with matter, and all aspects of imaging equipment and technology commonly found in the modern radiology department. The chapter on computed tomography (CT) has been heavily revised and updated. Protective measures regarding radiation safety and radiation hazards for workers and patients are thoroughly discussed and new chapters on dual energy x-ray absorptiometry (DXA), magnetic resonance imaging (MRI), ultrasound (US), fusion and molecular imaging have been added. This book will be very helpful to students about to take the ARRT (R) registry examination, but it is not a registry review book per se. This book also serves as a good overview of radiologic imaging physics for radiographers and other medical professionals.


The Essential Physics of Medical Imaging

The Essential Physics of Medical Imaging

Author: Jerold T. Bushberg

Publisher: Lippincott Williams & Wilkins

Published: 2020-11-24

Total Pages: 1688

ISBN-13: 1975103246

DOWNLOAD EBOOK

Widely regarded as the cornerstone text in the field, the successful series of editions continues to follow the tradition of a clear and comprehensive presentation of the physical principles and operational aspects of medical imaging. The Essential Physics of Medical Imaging, 4th Edition, is a coherent and thorough compendium of the fundamental principles of the physics, radiation protection, and radiation biology that underlie the practice and profession of medical imaging. Distinguished scientists and educators from the University of California, Davis, provide up-to-date, readable information on the production, characteristics, and interactions of non-ionizing and ionizing radiation, magnetic fields and ultrasound used in medical imaging and the imaging modalities in which they are used, including radiography, mammography, fluoroscopy, computed tomography, magnetic resonance, ultrasound, and nuclear medicine. This vibrant, full-color text is enhanced by more than 1,000 images, charts, and graphs, including hundreds of new illustrations. This text is a must-have resource for medical imaging professionals, radiology residents who are preparing for Core Exams, and teachers and students in medical physics and biomedical engineering.


The Physics of Radiation Therapy

The Physics of Radiation Therapy

Author: Faiz M. Khan

Publisher: Lippincott Williams & Wilkins

Published: 2012-03-28

Total Pages: 576

ISBN-13: 1451149131

DOWNLOAD EBOOK

Dr. Khan's classic textbook on radiation oncology physics is now in its thoroughly revised and updated Fourth Edition. It provides the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—with a thorough understanding of the physics and practical clinical applications of advanced radiation therapy technologies, including 3D-CRT, stereotactic radiotherapy, HDR, IMRT, IGRT, and proton beam therapy. These technologies are discussed along with the physical concepts underlying treatment planning, treatment delivery, and dosimetry. This Fourth Edition includes brand-new chapters on image-guided radiation therapy (IGRT) and proton beam therapy. Other chapters have been revised to incorporate the most recent developments in the field. This edition also features more than 100 full-color illustrations throughout. A companion Website will offer the fully searchable text and an image bank.