Semi-Supervised Learning

Semi-Supervised Learning

Author: Olivier Chapelle

Publisher: MIT Press

Published: 2010-01-22

Total Pages: 525

ISBN-13: 0262514125

DOWNLOAD EBOOK

A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems: state-of-the-art algorithms, a taxonomy of the field, applications, benchmark experiments, and directions for future research. In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research.Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.


Introduction to Semi-Supervised Learning

Introduction to Semi-Supervised Learning

Author: Xiaojin Geffner

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 116

ISBN-13: 3031015487

DOWNLOAD EBOOK

Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook


Semisupervised Learning for Computational Linguistics

Semisupervised Learning for Computational Linguistics

Author: Steven Abney

Publisher: CRC Press

Published: 2007-09-17

Total Pages: 322

ISBN-13: 1420010808

DOWNLOAD EBOOK

The rapid advancement in the theoretical understanding of statistical and machine learning methods for semisupervised learning has made it difficult for nonspecialists to keep up to date in the field. Providing a broad, accessible treatment of the theory as well as linguistic applications, Semisupervised Learning for Computational Linguistics offer


Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases

Author: Walter Daelemans

Publisher: Springer Science & Business Media

Published: 2008-09-04

Total Pages: 714

ISBN-13: 354087478X

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.


Graph-Based Semi-Supervised Learning

Graph-Based Semi-Supervised Learning

Author: Amarnag Lipovetzky

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 111

ISBN-13: 3031015711

DOWNLOAD EBOOK

While labeled data is expensive to prepare, ever increasing amounts of unlabeled data is becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabeled data, have been developed. In a separate line of work, researchers have started to realize that graphs provide a natural way to represent data in a variety of domains. Graph-based SSL algorithms, which bring together these two lines of work, have been shown to outperform the state-of-the-art in many applications in speech processing, computer vision, natural language processing, and other areas of Artificial Intelligence. Recognizing this promising and emerging area of research, this synthesis lecture focuses on graph-based SSL algorithms (e.g., label propagation methods). Our hope is that after reading this book, the reader will walk away with the following: (1) an in-depth knowledge of the current state-of-the-art in graph-based SSL algorithms, and the ability to implement them; (2) the ability to decide on the suitability of graph-based SSL methods for a problem; and (3) familiarity with different applications where graph-based SSL methods have been successfully applied. Table of Contents: Introduction / Graph Construction / Learning and Inference / Scalability / Applications / Future Work / Bibliography / Authors' Biographies / Index


Academic Press Library in Signal Processing

Academic Press Library in Signal Processing

Author: Paulo S.R. Diniz

Publisher: Academic Press

Published: 2013-09-21

Total Pages: 1559

ISBN-13: 0123972264

DOWNLOAD EBOOK

This first volume, edited and authored by world leading experts, gives a review of the principles, methods and techniques of important and emerging research topics and technologies in machine learning and advanced signal processing theory. With this reference source you will: - Quickly grasp a new area of research - Understand the underlying principles of a topic and its application - Ascertain how a topic relates to other areas and learn of the research issues yet to be resolved - Quick tutorial reviews of important and emerging topics of research in machine learning - Presents core principles in signal processing theory and shows their applications - Reference content on core principles, technologies, algorithms and applications - Comprehensive references to journal articles and other literature on which to build further, more specific and detailed knowledge - Edited by leading people in the field who, through their reputation, have been able to commission experts to write on a particular topic


Understanding Machine Learning

Understanding Machine Learning

Author: Shai Shalev-Shwartz

Publisher: Cambridge University Press

Published: 2014-05-19

Total Pages: 415

ISBN-13: 1107057132

DOWNLOAD EBOOK

Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.


Supervised and Unsupervised Learning for Data Science

Supervised and Unsupervised Learning for Data Science

Author: Michael W. Berry

Publisher: Springer Nature

Published: 2019-09-04

Total Pages: 191

ISBN-13: 3030224759

DOWNLOAD EBOOK

This book covers the state of the art in learning algorithms with an inclusion of semi-supervised methods to provide a broad scope of clustering and classification solutions for big data applications. Case studies and best practices are included along with theoretical models of learning for a comprehensive reference to the field. The book is organized into eight chapters that cover the following topics: discretization, feature extraction and selection, classification, clustering, topic modeling, graph analysis and applications. Practitioners and graduate students can use the volume as an important reference for their current and future research and faculty will find the volume useful for assignments in presenting current approaches to unsupervised and semi-supervised learning in graduate-level seminar courses. The book is based on selected, expanded papers from the Fourth International Conference on Soft Computing in Data Science (2018). Includes new advances in clustering and classification using semi-supervised and unsupervised learning; Address new challenges arising in feature extraction and selection using semi-supervised and unsupervised learning; Features applications from healthcare, engineering, and text/social media mining that exploit techniques from semi-supervised and unsupervised learning.


Language, Knowledge, and Representation

Language, Knowledge, and Representation

Author: Jesus M. Larrazabal

Publisher: Springer Science & Business Media

Published: 2013-11-09

Total Pages: 185

ISBN-13: 1402027834

DOWNLOAD EBOOK

Every two years since 1989, an international colloquium on cognitive science is held in Donostia - San Sebastian, attracting the most important researchers in that field. This volume is a collection of the invited papers to the Sixth International Colloquium on Cognitive Science (ICCS-99), written from a multidisciplinary, cognitive perspective, and addressing various essential topics such as self-knowledge, intention, consciousness, language use, learning and discourse. This collection reflects not only the various interdisciplinary origins and standpoints of the participating researchers, but also the richness, fruitfulness, and exciting state of research in the field of cognitive science today. A must-read for anyone interested in philosophy, linguistics, psychology, and computer science, and in the perception of these topics from the perspective of cognitive science.


Proceedings of the 5th International Conference on Big Data and Internet of Things

Proceedings of the 5th International Conference on Big Data and Internet of Things

Author: Mohamed Lazaar

Publisher: Springer Nature

Published: 2022-07-03

Total Pages: 600

ISBN-13: 3031079698

DOWNLOAD EBOOK

This book is a collection of papers in the research area of big data, cloud computing, cybersecurity, machine learning, deep learning, e-learning, Internet of Things, reinforcement learning, information system, social media and natural language processing. This book includes papers presented at the 5th International Conference on Big Data Cloud and Internet of Things, BDIoT 2021 during March 17–18, 2021, at ENSIAS, Mohammed V University in Rabat, Morocco.