Fundamental Heat Transfer Research for Gas Turbine Engines
Author:
Publisher:
Published: 1980
Total Pages: 76
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author:
Publisher:
Published: 1980
Total Pages: 76
ISBN-13:
DOWNLOAD EBOOKAuthor: Jamil Ghojel
Publisher: John Wiley & Sons
Published: 2020-04-20
Total Pages: 534
ISBN-13: 1119548764
DOWNLOAD EBOOKSummarizes the analysis and design of today’s gas heat engine cycles This book offers readers comprehensive coverage of heat engine cycles. From ideal (theoretical) cycles to practical cycles and real cycles, it gradually increases in degree of complexity so that newcomers can learn and advance at a logical pace, and so instructors can tailor their courses toward each class level. To facilitate the transition from one type of cycle to another, it offers readers additional material covering fundamental engineering science principles in mechanics, fluid mechanics, thermodynamics, and thermochemistry. Fundamentals of Heat Engines: Reciprocating and Gas Turbine Internal-Combustion Engines begins with a review of some fundamental principles of engineering science, before covering a wide range of topics on thermochemistry. It next discusses theoretical aspects of the reciprocating piston engine, starting with simple air-standard cycles, followed by theoretical cycles of forced induction engines, and ending with more realistic cycles that can be used to predict engine performance as a first approximation. Lastly, the book looks at gas turbines and covers cycles with gradually increasing complexity to end with realistic engine design-point and off-design calculations methods. Covers two main heat engines in one single reference Teaches heat engine fundamentals as well as advanced topics Includes comprehensive thermodynamic and thermochemistry data Offers customizable content to suit beginner or advanced undergraduate courses and entry-level postgraduate studies in automotive, mechanical, and aerospace degrees Provides representative problems at the end of most chapters, along with a detailed example of piston-engine design-point calculations Features case studies of design-point calculations of gas turbine engines in two chapters Fundamentals of Heat Engines can be adopted for mechanical, aerospace, and automotive engineering courses at different levels and will also benefit engineering professionals in those fields and beyond.
Author: Bengt Sundén
Publisher: Witpress
Published: 2001
Total Pages: 544
ISBN-13:
DOWNLOAD EBOOKThis title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.
Author: Je-Chin Han
Publisher: Taylor & Francis
Published: 2012-11-27
Total Pages: 865
ISBN-13: 1466564903
DOWNLOAD EBOOKA comprehensive reference for engineers and researchers, this second edition focuses on gas turbine heat transfer issues and their associated cooling technologies for aircraft and land-based gas turbines. It provides information on state-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling schemes. The book also offers updated experimental methods for gas turbine heat transfer and cooling research, as well as advanced computational models for gas turbine heat transfer and cooling performance predictions. The authors provide suggestions for future research within this technology and includes 800 illustrations to help clarify concepts and instruction.
Author:
Publisher:
Published: 1985
Total Pages: 472
ISBN-13:
DOWNLOAD EBOOKAuthor: Je-Chin Han
Publisher: CRC Press
Published: 2012-11-27
Total Pages: 892
ISBN-13: 1439855684
DOWNLOAD EBOOKA comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Author:
Publisher:
Published: 1990
Total Pages: 92
ISBN-13:
DOWNLOAD EBOOKAuthor: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Published: 2020-04-19
Total Pages: 137
ISBN-13: 0309664225
DOWNLOAD EBOOKLeadership in gas turbine technologies is of continuing importance as the value of gas turbine production is projected to grow substantially by 2030 and beyond. Power generation, aviation, and the oil and gas industries rely on advanced technologies for gas turbines. Market trends including world demographics, energy security and resilience, decarbonization, and customer profiles are rapidly changing and influencing the future of these industries and gas turbine technologies. Technology trends that define the technological environment in which gas turbine research and development will take place are also changing - including inexpensive, large scale computational capabilities, highly autonomous systems, additive manufacturing, and cybersecurity. It is important to evaluate how these changes influence the gas turbine industry and how to manage these changes moving forward. Advanced Technologies for Gas Turbines identifies high-priority opportunities for improving and creating advanced technologies that can be introduced into the design and manufacture of gas turbines to enhance their performance. The goals of this report are to assess the 2030 gas turbine global landscape via analysis of global leadership, market trends, and technology trends that impact gas turbine applications, develop a prioritization process, define high-priority research goals, identify high-priority research areas and topics to achieve the specified goals, and direct future research. Findings and recommendations from this report are important in guiding research within the gas turbine industry and advancing electrical power generation, commercial and military aviation, and oil and gas production.
Author:
Publisher:
Published: 1994
Total Pages: 836
ISBN-13:
DOWNLOAD EBOOKAuthor: Ronald D. Flack
Publisher: Cambridge University Press
Published: 2005-04-25
Total Pages: 696
ISBN-13: 1107393884
DOWNLOAD EBOOKThis introductory 2005 text on air-breathing jet propulsion focuses on the basic operating principles of jet engines and gas turbines. Previous coursework in fluid mechanics and thermodynamics is elucidated and applied to help the student understand and predict the characteristics of engine components and various types of engines and power gas turbines. Numerous examples help the reader appreciate the methods and differing, representative physical parameters. A capstone chapter integrates the text material into a portion of the book devoted to system matching and analysis so that engine performance can be predicted for both on- and off-design conditions. The book is designed for advanced undergraduate and first-year graduate students in aerospace and mechanical engineering. A basic understanding of fluid dynamics and thermodynamics is presumed. Although aircraft propulsion is the focus, the material can also be used to study ground- and marine-based gas turbines and turbomachinery and some advanced topics in compressors and turbines.