Decision Making under Deep Uncertainty

Decision Making under Deep Uncertainty

Author: Vincent A. W. J. Marchau

Publisher: Springer

Published: 2019-04-04

Total Pages: 408

ISBN-13: 3030052524

DOWNLOAD EBOOK

This open access book focuses on both the theory and practice associated with the tools and approaches for decisionmaking in the face of deep uncertainty. It explores approaches and tools supporting the design of strategic plans under deep uncertainty, and their testing in the real world, including barriers and enablers for their use in practice. The book broadens traditional approaches and tools to include the analysis of actors and networks related to the problem at hand. It also shows how lessons learned in the application process can be used to improve the approaches and tools used in the design process. The book offers guidance in identifying and applying appropriate approaches and tools to design plans, as well as advice on implementing these plans in the real world. For decisionmakers and practitioners, the book includes realistic examples and practical guidelines that should help them understand what decisionmaking under deep uncertainty is and how it may be of assistance to them. Decision Making under Deep Uncertainty: From Theory to Practice is divided into four parts. Part I presents five approaches for designing strategic plans under deep uncertainty: Robust Decision Making, Dynamic Adaptive Planning, Dynamic Adaptive Policy Pathways, Info-Gap Decision Theory, and Engineering Options Analysis. Each approach is worked out in terms of its theoretical foundations, methodological steps to follow when using the approach, latest methodological insights, and challenges for improvement. In Part II, applications of each of these approaches are presented. Based on recent case studies, the practical implications of applying each approach are discussed in depth. Part III focuses on using the approaches and tools in real-world contexts, based on insights from real-world cases. Part IV contains conclusions and a synthesis of the lessons that can be drawn for designing, applying, and implementing strategic plans under deep uncertainty, as well as recommendations for future work. The publication of this book has been funded by the Radboud University, the RAND Corporation, Delft University of Technology, and Deltares.


Global Sensitivity Analysis

Global Sensitivity Analysis

Author: Andrea Saltelli

Publisher: John Wiley & Sons

Published: 2008-02-28

Total Pages: 304

ISBN-13: 9780470725177

DOWNLOAD EBOOK

Complex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping assumptions into inferences. A modeller makes assumptions about laws pertaining to the system, about its status and a plethora of other, often arcane, system variables and internal model settings. To what extent can we rely on the model-based inference when most of these assumptions are fraught with uncertainties? Global Sensitivity Analysis offers an accessible treatment of such problems via quantitative sensitivity analysis, beginning with the first principles and guiding the reader through the full range of recommended practices with a rich set of solved exercises. The text explains the motivation for sensitivity analysis, reviews the required statistical concepts, and provides a guide to potential applications. The book: Provides a self-contained treatment of the subject, allowing readers to learn and practice global sensitivity analysis without further materials. Presents ways to frame the analysis, interpret its results, and avoid potential pitfalls. Features numerous exercises and solved problems to help illustrate the applications. Is authored by leading sensitivity analysis practitioners, combining a range of disciplinary backgrounds. Postgraduate students and practitioners in a wide range of subjects, including statistics, mathematics, engineering, physics, chemistry, environmental sciences, biology, toxicology, actuarial sciences, and econometrics will find much of use here. This book will prove equally valuable to engineers working on risk analysis and to financial analysts concerned with pricing and hedging.


Decision Making Under Uncertainty

Decision Making Under Uncertainty

Author: Mykel J. Kochenderfer

Publisher: MIT Press

Published: 2015-07-24

Total Pages: 350

ISBN-13: 0262331713

DOWNLOAD EBOOK

An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.


Sensitivity Analysis for Neural Networks

Sensitivity Analysis for Neural Networks

Author: Daniel S. Yeung

Publisher: Springer Science & Business Media

Published: 2009-11-09

Total Pages: 89

ISBN-13: 3642025323

DOWNLOAD EBOOK

Artificial neural networks are used to model systems that receive inputs and produce outputs. The relationships between the inputs and outputs and the representation parameters are critical issues in the design of related engineering systems, and sensitivity analysis concerns methods for analyzing these relationships. Perturbations of neural networks are caused by machine imprecision, and they can be simulated by embedding disturbances in the original inputs or connection weights, allowing us to study the characteristics of a function under small perturbations of its parameters. This is the first book to present a systematic description of sensitivity analysis methods for artificial neural networks. It covers sensitivity analysis of multilayer perceptron neural networks and radial basis function neural networks, two widely used models in the machine learning field. The authors examine the applications of such analysis in tasks such as feature selection, sample reduction, and network optimization. The book will be useful for engineers applying neural network sensitivity analysis to solve practical problems, and for researchers interested in foundational problems in neural networks.


Multi-criteria Decision Analysis

Multi-criteria Decision Analysis

Author: Alessio Ishizaka

Publisher: John Wiley & Sons

Published: 2013-06-10

Total Pages: 260

ISBN-13: 1118644913

DOWNLOAD EBOOK

This book presents an introduction to MCDA followed by more detailed chapters about each of the leading methods used in this field. Comparison of methods and software is also featured to enable readers to choose the most appropriate method needed in their research. Worked examples as well as the software featured in the book are available on an accompanying website.


Encyclopedia of Operations Research and Management Science

Encyclopedia of Operations Research and Management Science

Author: Saul I. Gass

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 774

ISBN-13: 1461304598

DOWNLOAD EBOOK

Operations Research: 1934-1941," 35, 1, 143-152; "British The goal of the Encyclopedia of Operations Research and Operational Research in World War II," 35, 3, 453-470; Management Science is to provide to decision makers and "U. S. Operations Research in World War II," 35, 6, 910-925; problem solvers in business, industry, government and and the 1984 article by Harold Lardner that appeared in academia a comprehensive overview of the wide range of Operations Research: "The Origin of Operational Research," ideas, methodologies, and synergistic forces that combine to 32, 2, 465-475. form the preeminent decision-aiding fields of operations re search and management science (OR/MS). To this end, we The Encyclopedia contains no entries that define the fields enlisted a distinguished international group of academics of operations research and management science. OR and MS and practitioners to contribute articles on subjects for are often equated to one another. If one defines them by the which they are renowned. methodologies they employ, the equation would probably The editors, working with the Encyclopedia's Editorial stand inspection. If one defines them by their historical Advisory Board, surveyed and divided OR/MS into specific developments and the classes of problems they encompass, topics that collectively encompass the foundations, applica the equation becomes fuzzy. The formalism OR grew out of tions, and emerging elements of this ever-changing field. We the operational problems of the British and U. s. military also wanted to establish the close associations that OR/MS efforts in World War II.


Handbook of Uncertainty Quantification

Handbook of Uncertainty Quantification

Author: Roger Ghanem

Publisher: Springer

Published: 2016-05-08

Total Pages: 0

ISBN-13: 9783319123844

DOWNLOAD EBOOK

The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.


Mastering Uncertainty in Mechanical Engineering

Mastering Uncertainty in Mechanical Engineering

Author: Peter F. Pelz

Publisher: Springer Nature

Published: 2021-10-11

Total Pages: 483

ISBN-13: 3030783545

DOWNLOAD EBOOK

This open access book reports on innovative methods, technologies and strategies for mastering uncertainty in technical systems. Despite the fact that current research on uncertainty is mainly focusing on uncertainty quantification and analysis, this book gives emphasis to innovative ways to master uncertainty in engineering design, production and product usage alike. It gathers authoritative contributions by more than 30 scientists reporting on years of research in the areas of engineering, applied mathematics and law, thus offering a timely, comprehensive and multidisciplinary account of theories and methods for quantifying data, model and structural uncertainty, and of fundamental strategies for mastering uncertainty. It covers key concepts such as robustness, flexibility and resilience in detail. All the described methods, technologies and strategies have been validated with the help of three technical systems, i.e. the Modular Active Spring-Damper System, the Active Air Spring and the 3D Servo Press, which have been in turn developed and tested during more than ten years of cooperative research. Overall, this book offers a timely, practice-oriented reference guide to graduate students, researchers and professionals dealing with uncertainty in the broad field of mechanical engineering.


Info-Gap Decision Theory

Info-Gap Decision Theory

Author: Yakov Ben-Haim

Publisher: Elsevier

Published: 2006-10-11

Total Pages: 385

ISBN-13: 0080465706

DOWNLOAD EBOOK

Everyone makes decisions, but not everyone is a decision analyst. A decision analyst uses quantitative models and computational methods to formulate decision algorithms, assess decision performance, identify and evaluate options, determine trade-offs and risks, evaluate strategies for investigation, and so on. Info-Gap Decision Theory is written for decision analysts. The term "decision analyst" covers an extremely broad range of practitioners. Virtually all engineers involved in design (of buildings, machines, processes, etc.) or analysis (of safety, reliability, feasibility, etc.) are decision analysts, usually without calling themselves by this name. In addition to engineers, decision analysts work in planning offices for public agencies, in project management consultancies, they are engaged in manufacturing process planning and control, in financial planning and economic analysis, in decision support for medical or technological diagnosis, and so on and on. Decision analysts provide quantitative support for the decision-making process in all areas where systematic decisions are made. This second edition entails changes of several sorts. First, info-gap theory has found application in several new areas - especially biological conservation, economic policy formulation, preparedness against terrorism, and medical decision-making. Pertinent new examples have been included. Second, the combination of info-gap analysis with probabilistic decision algorithms has found wide application. Consequently "hybrid" models of uncertainty, which were treated exclusively in a separate chapter in the previous edition, now appear throughout the book as well as in a separate chapter. Finally, info-gap explanations of robust-satisficing behavior, and especially the Ellsberg and Allais "paradoxes", are discussed in a new chapter together with a theorem indicating when robust-satisficing will have greater probability of success than direct optimizing with uncertain models. - New theory developed systematically - Many examples from diverse disciplines - Realistic representation of severe uncertainty - Multi-faceted approach to risk - Quantitative model-based decision theory