Micro- and Nanosystems for Biotechnology

Micro- and Nanosystems for Biotechnology

Author: J. Christopher Love

Publisher: John Wiley & Sons

Published: 2016-08-08

Total Pages: 304

ISBN-13: 3527332812

DOWNLOAD EBOOK

Emphasizing their emerging capabilities, this volume provides a strong foundation for an understanding of how micro- and nanotechnologies used in biomedical research have evolved from concepts to working platforms. Volume editor Christopher Love has assembled here a highly interdisciplinary group of authors with backgrounds ranging from chemical engineering right up to materials science to reflect how the intersection of ideas from biology with engineering disciplines has spurred on innovations. In fact, a number of the basic technologies described are reaching the market to advance the discovery and development of biopharmaceuticals. The first part of the book focuses on microsystems for single-cell analysis, examining tools and techniques used to isolate cells from a range of biological samples, while the second part is dedicated to tiny technologies for modulating biological systems at the scale of individual cells, tissues or whole organisms. New tools are described which have a great potential for (pre)clinical development of interventions in a range of illnesses, such as cancer and neurological diseases. Besides describing the promising applications, the authors also highlight the ongoing challenges and opportunities in the field.


Energy Autonomous Micro and Nano Systems

Energy Autonomous Micro and Nano Systems

Author: Marc Belleville

Publisher: John Wiley & Sons

Published: 2012-12-17

Total Pages: 247

ISBN-13: 1118587820

DOWNLOAD EBOOK

Providing a detailed overview of the fundamentals and latest developments in the field of energy autonomous microsystems, this book delivers an in-depth study of the applications in the fields of health and usage monitoring in aeronautics, medical implants, and home automation, drawing out the main specifications on such systems. Introductory information on photovoltaic, thermal and mechanical energy harvesting, and conversion, is given, along with the latest results in these fields. This book also provides a state of the art of ultra-low power sensor interfaces, digital signal processing and wireless communications. In addition, energy optimizations at the sensor node and sensors network levels are discussed, thus completing this overview. This book details the challenges and latest techniques available to readers who are interested in this field. A major strength of this book is that the first three chapters are application orientated and thus, by setting the landscape, introduce the technical chapters. There is also a good balance between the technical application, covering all the system-related aspects and, within each chapter, details on the physics, materials and technologies associated with electronics. Contents Introduction. Introduction to Energy Autonomous Micro and Nano Systems and Presentation of Contributions, Marc Belleville and Cyril Condemine. 1. Sensors at the Core of Building Control, Gilles Chabanis, Laurent Chiesi, Hynek Raisigel, Isabelle Ressejac and Véronique Boutin. 2. Toward Energy Autonomous MedicalImplants, Raymond Campagnolo and Daniel Kroiss. 3. Energy Autonomous Systems in Aeronautic Applications, Thomas Becker, Jirka Klaue and Martin Kluge. 4. Energy Harvesting by Photovoltaic Effect, Emmanuelle Rouvière, Simon Perraud, Cyril Condemine and Guy Waltisperger. 5. Mechanical Energy Harvesting, Ghislain Despesse, Jean Jacques Chaillout, Sébastien Boisseau and Claire Jean-Mistral. 6. Thermal Energy Harvesting, Tristan Caroff, Emmanuelle Rouvière and Jérôme Willemin. 7. Lithium Micro-Batteries, Raphaël Salot. 8. Ultra-Low-Power Sensors, Pascal Nouet, Norbert Dumas, Laurent Latorre and Frédérick Mailly. 9. Ultra-Low-Power Signal Processing in Autonomous Systems, Christian Piguet. 10. Ultra-Low-Power Radio Frequency Communications and Protocols, Eric Mercier. 11. Energy Management in an Autonomous Microsystem, Jean-Frédéric Christmann, Edith Beigne, Cyril Condemine, Jérôme Willemin and Christian Piguet. 12. Optimizing Energy Efficiency of Sensor Networks, Olivier Sentieys and Olivier Berder.


Silk-based Drug Delivery Systems

Silk-based Drug Delivery Systems

Author: Elia Bari

Publisher:

Published: 2020-10-05

Total Pages: 0

ISBN-13: 9781839162664

DOWNLOAD EBOOK

Covering spider silk and silk worm cocoons, the editors elucidate the extraction, structure and properties of silk sericin and silk fibroin.


Nanotechnology and Functional Materials for Engineers

Nanotechnology and Functional Materials for Engineers

Author: Yaser Dahman

Publisher: Elsevier

Published: 2017-01-13

Total Pages: 284

ISBN-13: 0323524664

DOWNLOAD EBOOK

Nanotechnology and Functional Materials for Engineers focuses on key essentials and examples across the spectrum of nanomaterials as applied by engineers, including nanosensors, smart nanomaterials, nanopolymers, and nanotubes. Chapters cover their synthesis and characteristics, production methods, and applications, with specific sections exploring nanoelectronics and electro-optic nanotechnology, nanostructures, and nanodevices. This book is a valuable resource for interdisciplinary researchers who want to learn more about how nanomaterials are used in different types of engineering, including electrical, chemical, and biomedical. - Offers in-depth information on a variety of nanomaterials and how they are used for different engineering applications - Provides an overview of current research and suggests how this will impact future applications - Explores how the unique properties of different nanomaterials make them particularly suitable for specific applications


Nano- and Micro-Electromechanical Systems

Nano- and Micro-Electromechanical Systems

Author: Sergey Edward Lyshevski

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 744

ISBN-13: 1420057936

DOWNLOAD EBOOK

Society is approaching and advancing nano- and microtechnology from various angles of science and engineering. The need for further fundamental, applied, and experimental research is matched by the demand for quality references that capture the multidisciplinary and multifaceted nature of the science. Presenting cutting-edge information that is applicable to many fields, Nano- and Micro-Electromechanical Systems: Fundamentals of Nano and Microengineering, Second Edition builds the theoretical foundation for understanding, modeling, controlling, simulating, and designing nano- and microsystems. The book focuses on the fundamentals of nano- and microengineering and nano- and microtechnology. It emphasizes the multidisciplinary principles of NEMS and MEMS and practical applications of the basic theory in engineering practice and technology development. Significantly revised to reflect both fundamental and technological aspects, this second edition introduces the concepts, methods, techniques, and technologies needed to solve a wide variety of problems related to high-performance nano- and microsystems. The book is written in a textbook style and now includes homework problems, examples, and reference lists in every chapter, as well as a separate solutions manual. It is designed to satisfy the growing demands of undergraduate and graduate students, researchers, and professionals in the fields of nano- and microengineering, and to enable them to contribute to the nanotechnology revolution.


Nanostructures for Antimicrobial Therapy

Nanostructures for Antimicrobial Therapy

Author: Anton Ficai

Publisher: Elsevier

Published: 2017-05-29

Total Pages: 724

ISBN-13: 0323461514

DOWNLOAD EBOOK

Nanostructures for Antimicrobial Therapy discusses the pros and cons of the use of nanostructured materials in the prevention and eradication of infections, highlighting the efficient microbicidal effect of nanoparticles against antibiotic-resistant pathogens and biofilms. Conventional antibiotics are becoming ineffective towards microorganisms due to their widespread and often inappropriate use. As a result, the development of antibiotic resistance in microorganisms is increasingly being reported. New approaches are needed to confront the rising issues related to infectious diseases. The merging of biomaterials, such as chitosan, carrageenan, gelatin, poly (lactic-co-glycolic acid) with nanotechnology provides a promising platform for antimicrobial therapy as it provides a controlled way to target cells and induce the desired response without the adverse effects common to many traditional treatments. Nanoparticles represent one of the most promising therapeutic treatments to the problem caused by infectious micro-organisms resistant to traditional therapies. This volume discusses this promise in detail, and also discusses what challenges the greater use of nanoparticles might pose to medical professionals. The unique physiochemical properties of nanoparticles, combined with their growth inhibitory capacity against microbes has led to the upsurge in the research on nanoparticles as antimicrobials. The importance of bactericidal nanobiomaterials study will likely increase as development of resistant strains of bacteria against most potent antibiotics continues. - Shows how nanoantibiotics can be used to more effectively treat disease - Discusses the advantages and issues of a variety of different nanoantibiotics, enabling medics to select which best meets their needs - Provides a cogent summary of recent developments in this field, allowing readers to quickly familiarize themselves with this topic area


Micro and Nano Fabrication Technology

Micro and Nano Fabrication Technology

Author: Jiwang Yan

Publisher: Springer

Published: 2018-07-16

Total Pages: 0

ISBN-13: 9789811300974

DOWNLOAD EBOOK

This volume focuses on the state-of-the-art micro/nanofabrication technologies for creating miniature structures with high precision. These multidisciplinary technologies include mechanical, electrical, optical, physical, and chemical methods, as well as hybrid processes, covering subtractive and additive material manufacturing, as well as net-shape manufacturing. The materials the volume deals with include metals, alloys, semiconductors, polymers, crystals, glass, ceramics, composites, and nanomaterials. The volume is composed of 30 chapters, which are grouped into five parts. Engaging with the latest research in the field, these chapters provide important perspectives on key topics, from process developments at the shop level to scientific investigations at the academic level, offering both experimental work and theoretical analysis. Moreover, the content of this volume is highly interdisciplinary in nature, with insights from not only manufacturing technology but also mechanical/material science, optics, physics, chemistry, and more.


Nano- and Microscale Drug Delivery Systems

Nano- and Microscale Drug Delivery Systems

Author: Alexandru Mihai Grumezescu

Publisher: William Andrew

Published: 2017-03-27

Total Pages: 516

ISBN-13: 0323527280

DOWNLOAD EBOOK

Nano- and Microscale Drug Delivery Systems: Design and Fabrication presents the developments that have taken place in recent years in the field of micro- and nanoscale drug delivery systems. Particular attention is assigned to the fabrication and design of drug delivery systems in order to i) reduce the side effects of therapeutic agents, ii) increase their pharmacological effect, and iii) improve aqueous solubility and chemical stability of different therapeutic agents. This book is designed to offer a cogent, concise overview of current scholarship in this important area of research through its focus on the characterization and fabrication of a variety of nanomaterials for drug delivery applications. It is an invaluable reference source for both biomaterials scientists and biomedical engineers who want to learn more about how nanomaterials are engineered and used in the design of drug delivery nanosystems. - Shows how micro- and nanomaterials can be engineered to create more effective drug delivery systems - Summarizes current nanotechnology research in the field of drug delivery systems - Explores the pros and cons of using particular nanomaterials as therapeutic agents - Serves as a valuable reference for both biomaterials scientists and biomedical engineers who want to learn more about how nanomaterials are engineered and used in the design of drug delivery nanosystems


Nanomaterials and Nanosystems for Biomedical Applications

Nanomaterials and Nanosystems for Biomedical Applications

Author: M. Reza Mozafari

Publisher: Springer Science & Business Media

Published: 2007-09-19

Total Pages: 170

ISBN-13: 1402062893

DOWNLOAD EBOOK

Under a single cover, this book brings together various aspects of functional bioengineered materials and nanostructured biomaterials including commonly used implants and sustained release nanodevices. The book includes expert reviews on the advances and current problems associated with the implants and nanodevices. Containing recent citations and bibliographies, this book will be an indispensable source of information for new researchers and scientists.


Nanotechnologies in Preventive and Regenerative Medicine

Nanotechnologies in Preventive and Regenerative Medicine

Author: Vuk Uskokovic

Publisher: Elsevier

Published: 2017-10-30

Total Pages: 618

ISBN-13: 0323480640

DOWNLOAD EBOOK

Nanotechnologies in Preventative and Regenerative Medicine demonstrates how control at the nanoscale can help achieve earlier diagnoses and create more effective treatments. Chapters take a logical approach, arranging materials by their area of application. Biomaterials are, by convention, divided according to the area of their application, with each chapter outlining current challenges before discussing how nanotechnology and nanomaterials can help solve these challenges This applications-orientated book is a valuable resource for researchers in biomedical science who want to gain a greater understanding on how nanotechnology can help create more effective vaccines and treatments, and to nanomaterials researchers seeking to gain a greater understanding of how these materials are applied in medicine. - Demonstrates how nanotechnology can help achieve more successful diagnoses at an earlier stage - Explains how nanomaterials can be manipulated to create more effective drug treatments - Offers suggestions on how the use of nanotechnology might have future applications to create even more effective treatments