Functional Importance of the Plant Microbiome

Functional Importance of the Plant Microbiome

Author: Sharon Lafferty Doty

Publisher: Springer

Published: 2017-09-21

Total Pages: 112

ISBN-13: 3319658972

DOWNLOAD EBOOK

This book addresses all the major mechanisms by which endophytes are thought to impact plant growth and health. A unique aspect of this publication is that it is multidisciplinary, covering plant microbiology, plant physiology, fungal and bacterial endophytes, plant biochemistry, and genomics. Just as research on the mammalian microbiome has demonstrated its importance for overall health of the host, the plant microbiota is essential for plant health in natural environments. Endophytes, the microorganisms living fully within plants, can provide a multitude of benefits to the host including N-fixation, P solubilization, increased photosynthetic efficiency and water use efficiency, stress tolerance, pathogen resistance, and overall increased growth and health. A variety of culturable endophytes have been isolated and shown to be mutualistic symbionts with a broad range of plant species. These studies point to the functional importance of the microbiota of plants and suggest the potential for tailoring plant microbiota for improved vigor and yields with reduced inputs. This review covers the major benefits of microbial endophytes to plants and discusses the implications of using symbiosis as an alternative to chemical inputs for agriculture, forestry, and bioenergy.


The plant microbiome and its importance for plant and human health

The plant microbiome and its importance for plant and human health

Author: Martin Grube

Publisher: Frontiers E-books

Published: 2015-01-22

Total Pages: 190

ISBN-13: 2889193780

DOWNLOAD EBOOK

The study of plant-microbe associations by new techniques has significantly improved our understanding of the structure and specificity of the plant microbiome. Yet, microbiome function and the importance of the plant’s microbiome in the context of human and plant health are largely unexplored. Comparable with our human microbiome, millions of microbes inhabit plants, forming complex ecological communities that influence plant growth and health through its collective metabolic activities and host interactions. Viewing the microbiota from an ecological perspective can provide insight into how to promote plant health and stress tolerance of their hosts or how to adapt to a changing climate by targeting this microbial community. Moreover, the plant microbiome has a substantial impact on human health by influencing our gut microbiome by eating raw plants such as lettuce and herbs but also by influencing the microbiome of our environment through airflow. This research topic comprising reviews, original and opinion articles highlights the current knowledge regarding plant microbiomes, their specificity, diversity and function as well as all aspects studying the management of plant microbiomes to enhance plant growth, health quality and stress tolerance.


Microbiome Stimulants for Crops

Microbiome Stimulants for Crops

Author: James F. White

Publisher: Woodhead Publishing

Published: 2021-04-17

Total Pages: 505

ISBN-13: 0128221607

DOWNLOAD EBOOK

Microbiome Stimulants for Crops: Mechanisms and Applications provides the latest developments in the real-world development and application of these crop management alternatives in a cost-effective, yield protective way. Sections address questions of research, development and application, with insights into recent legislative efforts in Europe and the United States. The book includes valuable information regarding mechanisms and the practical information needed to support the growing microbial inoculant and biostimulant industry, thus helping focus scientific research in new directions. - Provides methods for finding and testing endophytic and growth promotional microbes - Explains the mechanisms of microbes and other biostimulant function in promoting plant growth - Evaluates methods for treatments of plants with microbes and microbiome stimulants - Identifies areas for new research


The Plant Microbiome in Sustainable Agriculture

The Plant Microbiome in Sustainable Agriculture

Author: Alok Kumar Srivastava

Publisher: John Wiley & Sons

Published: 2021-02-16

Total Pages: 320

ISBN-13: 111950516X

DOWNLOAD EBOOK

The most up-to-date reference on phytomicrobiomes available today The Plant Microbiome in Sustainable Agriculture combines the most relevant and timely information available today in the fields of nutrient and food security. With a particular emphasis on current research progress and perspectives of future development in the area, The Plant Microbiome in Sustainable Agriculture is an invaluable reference for students and researchers in the field, as well as those with an interest in microbiome research and development. The book covers both terrestrial and crop associated microbiomes, unveiling the biological, biotechnological and technical aspects of research. Topics discussed include: Developing model plant microbiome systems for various agriculturally important crops Defining core microbiomes and metagenomes in these model systems Defining synthetic microbiomes for a sustainable increase in food production and quality The Plant Microbiome in Sustainable Agriculture is written to allow a relative neophyte to learn and understand the basic concepts involved in phytomicrobiomes and discuss them intelligently with colleagues.


Plant Microbiomes for Sustainable Agriculture

Plant Microbiomes for Sustainable Agriculture

Author: Ajar Nath Yadav

Publisher: Springer Nature

Published: 2020-03-06

Total Pages: 496

ISBN-13: 3030384535

DOWNLOAD EBOOK

This book encompasses the current knowledge of plant microbiomes and their potential biotechnological application for plant growth, crop yield and soil health for sustainable agriculture. The plant microbiomes (rhizospheric, endophytic and epiphytic) play an important role in plant growth, development, and soil health. Plant and rhizospheric soil are a valuable natural resource harbouring hotspots of microbes, and it plays critical roles in the maintenance of global nutrient balance and ecosystem function. The diverse group of microbes is key components of soil–plant systems, where they are engaged in an intense network of interactions in the rhizosphere/endophytic/phyllospheric. The rhizospheric microbial diversity present in rhizospheric zones has a sufficient amount of nutrients release by plant root systems in form of root exudates for growth, development and activities of microbes. The endophytic microbes are referred to those microorganisms, which colonize in the interior of the plant parts, viz root, stem or seeds without causing any harmful effect on host plant. Endophytic microbes enter in host plants mainly through wounds, naturally occurring as a result of plant growth, or through root hairs and at epidermal conjunctions. Endophytes may be transmitted either vertically (directly from parent to offspring) or horizontally (among individuals). The phyllosphere is a common niche for synergism between microbes and plant. The leaf surface has been termed as phyllosphere and zone of leaves inhabited by microorganisms as phyllosphere. The plant part, especially leaves, is exposed to dust and air currents resulting in the establishments of typical flora on their surface aided by the cuticles, waxes and appendages, which help in the anchorage of microorganisms. The phyllospheric microbes may survive or proliferate on leaves depending on extent of influences of material in leaf diffuseness or exudates. The leaf diffuseness contains the principal nutrients factors (amino acids, glucose, fructose and sucrose), and such specialized habitats may provide niche for nitrogen fixation and secretions of substances capable of promoting the growth of plants. The microbes associated with plant as rhizospheric, endophytic and epiphytic with plant growth promoting (PGP) attributes have emerged as an important and promising tool for sustainable agriculture. PGP microbes promote plant growth directly or indirectly, either by releasing plant growth regulators; solubilization of phosphorus, potassium and zinc; biological nitrogen fixation or by producing siderophore, ammonia, HCN and other secondary metabolites which are antagonistic against pathogenic microbes. The PGP microbes belong to different phylum of archaea (Euryarchaeota); bacteria (Acidobacteria, Actinobacteria, Bacteroidetes, Deinococcus-Thermus, Firmicutes and Proteobacteria) and fungi (Ascomycota and Basidiomycota), which include different genera namely Achromobacter, Arthrobacter, Aspergillus, Azospirillum, Azotobacter, Bacillus, Beijerinckia, Burkholderia, Enterobacter, Erwinia, Flavobacterium, Gluconoacetobacter, Haloarcula, Herbaspirillum, Methylobacterium, Paenibacillus, Pantoea, Penicillium, Piriformospora, Planomonospora, Pseudomonas, Rhizobium, Serratia and Streptomyces. These PGP microbes could be used as biofertilizers/bioinoculants at place of chemical fertilizers for sustainable agriculture. The aim of “Plant Microbiomes for Sustainable Agriculture” is to provide the current developments in the understanding of microbial diversity associated with plant systems in the form of rhizospheric, endophytic and epiphytic. The book is useful to scientist, research and students related to microbiology, biotechnology, agriculture, molecular biology, environmental biology and related subjects.


The Brazilian Microbiome

The Brazilian Microbiome

Author: Victor Pylro

Publisher: Springer

Published: 2017-09-21

Total Pages: 128

ISBN-13: 3319599976

DOWNLOAD EBOOK

Brazilian Microbiome: Current status and perspectives unites a set of distinguished investigators conducting microbiome research and builds a comprehensive reference book with up-to-date information regarding the Brazilian microbiome studies and trends. It covers terrestrial and host associated microbiomes, unveiling biological, biotechnological and technical aspects of research. This book is devoted to students and professionals interested in learning techniques for microbiome surveys, including culture-independent approaches, and to better understand the biology of microorganisms in nature, with emphasis on the Brazilian microbiomes.


Phytomicrobiome Interactions and Sustainable Agriculture

Phytomicrobiome Interactions and Sustainable Agriculture

Author: Amit Verma

Publisher: John Wiley & Sons

Published: 2021-01-08

Total Pages: 320

ISBN-13: 111964481X

DOWNLOAD EBOOK

A guide to the role microbes play in the enhanced production and productivity of agriculture to feed our growing population Phytomicrobiome Interactions and Sustainable Agriculture offers an essential guide to the importance of ‘Phytomicrobiome’ and explores its various components. The authors – noted experts on the topic – explore the key benefits of plant development such as nutrient availability, amelioration of stress and defense to plant disease. Throughout the book, the authors introduce and classify the corresponding Phytomicrobiome components and then present a detailed discussion related to its effect on plant development: controlling factors of this biome, its behaviour under the prevailing climate change condition and beneficial effects. The book covers the newly emerging technical concept of Phytomicrobiome engineering, which is an advanced concept to sustain agricultural productivity in recent climatic scenario. The text is filled with comprehensive, cutting edge data, making it possible to access this ever-growing wealth of information. This important book: Offers a one-stop resource on phytomicrobiome concepts Provides a better understanding of the topic and how it can be employed for understanding plant development Contains a guide to sustaining agriculture using phytomicrobiome engineering Presents information that can lead to enhanced production and productivity to feed our growing population Written for students, researchers and policy makers of plant biology, Phytomicrobiome Interactions and Sustainable Agriculture offers a clear understanding of the importance of microbes in overall plant growth and development.


Advances in Plant Microbiome and Sustainable Agriculture

Advances in Plant Microbiome and Sustainable Agriculture

Author: Ajar Nath Yadav

Publisher: Springer Nature

Published: 2020-08-03

Total Pages: 294

ISBN-13: 9811532044

DOWNLOAD EBOOK

Microbes are ubiquitous in nature, and plant-microbe interactions are a key strategy for colonizing diverse habitats. The plant microbiome (epiphytic, endophytic and rhizospheric) plays an important role in plant growth and development and soil health. Further, rhizospheric soil is a valuable natural resource, hosting hotspots of microbes, and is vital in the maintenance of global nutrient balance and ecosystem function. The term endophytic microbes refers to those microorganisms that colonize the interior the plants. The phyllosphere is a common niche for synergism between microbes and plants and includes the leaf surface. The diverse group of microbes are key components of soil-plant systems, and where they are engaged in an extensive network of interactions in the rhizosphere/endophytic/phyllospheric they have emerged as an important and promising tool for sustainable agriculture. Plant microbiomes help to directly or indirectly promote plant growth using plant growth promoting attributes, and could potentially be used as biofertilizers/bioinoculants in place of chemical fertilizers. This book allows readers to gain an understanding of microbial diversity associated with plant systems and their role in plant growth, and soil health. Offering an overview of the state of the art in plant microbiomes and their potential biotechnological applications in agriculture and allied sectors, it is a valuable resource for scientists, researchers and students in the field of microbiology, biotechnology, agriculture, molecular biology, environmental biology and related subjects.


Plant Microbiome: Stress Response

Plant Microbiome: Stress Response

Author: Dilfuza Egamberdieva

Publisher: Springer

Published: 2018-02-06

Total Pages: 389

ISBN-13: 9811055149

DOWNLOAD EBOOK

This book presents state-of-the-art research on the many facets of the plant microbiome, including diversity, ecology, physiology and genomics, as well as molecular mechanisms of plant-microbe interactions. Topics considered include the importance of microbial secondary metabolites in stimulating plant growth, induced systemic resistance, tolerance to abiotic stress, and biological control of plant pathogens. The respective contributions show how microbes help plants to cope with abiotic stresses, and represent significant progress toward understanding the complex regulatory networks critical to host-microbe interaction and plant adaptation in extreme environments. New insights into the mechanisms of microbial actions in inducing plant stress tolerance open new doors for improving the efficacy of microbial strategies, and could produce new ways of economically increasing crop yields without harming the environment. As such, this book offers an essential resource for students and researchers with an interest in plant-microbe interaction, as well as several possibilities for employing the plant microbiome in the enhancement of crop productivity under future climate change scenarios.


Principles of Plant-Microbe Interactions

Principles of Plant-Microbe Interactions

Author: Ben Lugtenberg

Publisher: Springer

Published: 2014-12-04

Total Pages: 447

ISBN-13: 3319085751

DOWNLOAD EBOOK

The use of microbial plant protection products is growing and their importance will strongly increase due to political and public pressure. World population is growing and the amount of food needed by 2050 will be double of what is produced now whereas the area of agricultural land is decreasing. We must increase crop yield in a sustainable way. Chemical plant growth promoters must be replaced by microbiological products. Also here, the use of microbial products is growing and their importance will strongly increase. A growing area of agricultural land is salinated. Global warming will increase this process. Plants growth is inhibited by salt or even made impossible and farmers tend to disuse the most salinated lands. Microbes have been very successfully used to alleviate salt stress of plants. Chemical pollution of land can make plant growth difficult and crops grown are often polluted and not suitable for consumption. Microbes have been used to degrade these chemical pollutants.