Fuel Plate Failure Experiments and Analyses in Irradiated U-10Mo Alloy

Fuel Plate Failure Experiments and Analyses in Irradiated U-10Mo Alloy

Author: Francine Joyce Rice

Publisher:

Published: 2017

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

The Materials Management and Minimization (M3) Program intends to qualify a new high-density low-enriched-uranium (LEU) U--Mo monolithic fuel to enable conversion of six US high-performance research reactors (USHPRRs). This thesis presents the preliminary results and discussions related to post-irradiation blister anneal studies and fission product release scoping studies performed on U--Mo monolithic fuel plates. Blister anneal testing on irradiated fuel plates is a temperature-resolved failure-threshold measurement technique historically used to assess fuel plate stability under off-normal operating conditions. The effects of fuel composition, geometry, fission density, and irradiation conditions are presented herein as parameters that were investigated for their impact on blister-threshold temperatures. The fission-product-transport scoping study successfully characterized the release, transport and temperature-resolved deposition behavior of iodine and cesium. Two failure temperatures were evaluated: 600 and 1250°C. Testing was performed in the main hot cell at the Materials and Fuels Complex located at Idaho National Laboratory.


Observations Derived From the Characterization of Monolithic Fuel Plates Irradiated as Part of the RERTR-6 Experiment

Observations Derived From the Characterization of Monolithic Fuel Plates Irradiated as Part of the RERTR-6 Experiment

Author:

Publisher:

Published: 2007

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Evaluation of the PIE results of the monolithic plates that were irradiated as part of the RERTR-6 experiment has continued. Specifically, comparisons have been made between the microstructures of the fuel plates before and after irradiation. Using the results from the rigorous characterization that was performed on the as-fabricated plates using scanning electron microscopy, it is possible to improve understanding of how monolithic fuel plates perform when they are irradiated. This paper will discuss the changes that occur, if any, in the microstructure of a monolithic fuel plate that is fabricated using techniques like what were employed for fabricating RERTR-6 fuel plates. In addition, the performance of fuel/cladding interaction layers that were present in the fuel plates due to the fabrication process will be discussed, particularly in the context of swelling of these layers and how these layers exhibit different behaviors depending on whether the fuel alloy in the fuel plate is U-7Mo or U-10Mo.


Microstructural Analysis of Irradiated U-Mo Fuel Plates

Microstructural Analysis of Irradiated U-Mo Fuel Plates

Author:

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Microstructural characterization of irradiated dispersion and monolithic RERTR fuel plates using scanning electron microscopy (SEM) is being performed in the Electron Microscopy Laboratory at the Idaho National Laboratory. The SEM analysis of samples from U-Mo dispersion fuel plates focuses primarily on the behavior of the Si that has been added to the Al matrix to improve the irradiation performance of the fuel plate and on the overall behavior of fission gases (e.g., Xe and Kr) that develop as bubbles in the fuel microstructure. For monolithic fuel plates, microstructural features of interest, include those found in the U-Mo foil and at the U-Mo/Zr and Zr/6061 Al cladding interfaces. For both dispersion and monolithic fuel plates, samples have been produced using an SEM equipped with a Focused Ion Beam (FIB). These samples are of very high quality and can be used to uncover some very unique microstructural features that are typically not observed when characterizing samples produced using more conventional techniques. Overall, for the dispersion fuel plates with matrices that contained Si, narrower fuel/matrix interaction layers are typically observed compared to the fuel plates with pure Al matrix, and for the monolithic fuel plates microstructural features have been observed in the U-10Mo foil that are similar to what have been observed in the fuel particles found in U-Mo dispersion fuels. Most recently, more prototypic monolithic fuel samples have been characterized and this paper describes the microstructures that have been observed in these samples.


Material Properties of Unirradiated Uranium-Molybdenum (U-Mo) Fuel for Research Reactors

Material Properties of Unirradiated Uranium-Molybdenum (U-Mo) Fuel for Research Reactors

Author: International Atomic Energy Agency

Publisher:

Published: 2020-10-12

Total Pages: 144

ISBN-13: 9789201157201

DOWNLOAD EBOOK

This publication presents the material properties of all unirradiated Uranium-Molybdenum (U-Mo) fuel constituents that are essential for fuel designers and reactor operators to evaluate the fuel's performance and safety for research reactors. Many significant advances in the understanding and development of low enriched uranium U-Mo fuels have been made since 2004, stimulated by the need to understand irradiation behavior and early fuel failures during testing. The publication presents a comprehensive overview of mechanical and physical property data from U-Mo fuel research


Status of Fast Reactor Research and Technology Development

Status of Fast Reactor Research and Technology Development

Author: International Atomic Energy Agency

Publisher:

Published: 2012

Total Pages: 0

ISBN-13: 9781523130191

DOWNLOAD EBOOK

"Based on a recommendation from the Technical Working Group on Fast Reactors, this publication is a regular update of previous publications on fast reactor technology. The publication provides comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors. The main issues of discussion are experience in design, construction, operation and decommissioning, various areas of research and development, engineering, safety and national strategies, and public acceptance of fast reactors. In the summary the reader will find national strategies, international initiatives on innovative (i.e. Generation IV) systems and an assessment of public acceptance as related to fast reactors."--Résumé de l'éditeur.


Materials and Processes

Materials and Processes

Author: Barrie D. Dunn

Publisher: Springer

Published: 2015-12-29

Total Pages: 677

ISBN-13: 3319233629

DOWNLOAD EBOOK

The objective of this book is to assist scientists and engineers select the ideal material or manufacturing process for particular applications; these could cover a wide range of fields, from light-weight structures to electronic hardware. The book will help in problem solving as it also presents more than 100 case studies and failure investigations from the space sector that can, by analogy, be applied to other industries. Difficult-to-find material data is included for reference. The sciences of metallic (primarily) and organic materials presented throughout the book demonstrate how they can be applied as an integral part of spacecraft product assurance schemes, which involve quality, material and processes evaluations, and the selection of mechanical and component parts. In this successor edition, which has been revised and updated, engineering problems associated with critical spacecraft hardware and the space environment are highlighted by over 500 illustrations including micrographs and fractographs. Space hardware captured by astronauts and returned to Earth from long durations in space are examined. Information detailed in the Handbook is applicable to general terrestrial applications including consumer electronics as well as high reliability systems associated with aeronautics, medical equipment and ground transportation. This Handbook is also directed to those involved in maximizing the relia bility of new materials and processes for space technology and space engineering. It will be invaluable to engineers concerned with the construction of advanced structures or mechanical and electronic sub-systems.


SEM and TEM Characterization of As-Fabricated U-7Mo Disperson Fuel Plates

SEM and TEM Characterization of As-Fabricated U-7Mo Disperson Fuel Plates

Author:

Publisher:

Published: 2009

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The starting microstructure of a dispersion fuel plate can have a dramatic impact on the overall performance of the plate during irradiation. To improve the understanding of the as-fabricated microstructures of dispersion fuel plates, SEM and TEM analysis have been performed on RERTR-9A archive fuel plates, which went through an additional hot isostatic procsssing (HIP) step during fabrication. The fuel plates had depleted U-7Mo fuel particles dispersed in either Al-2Si or 4043 Al alloy matrix. For the characterized samples, it was observed that a large fraction of the?-phase U-7Mo alloy particles had decomposed during fabrication, and in areas near the fuel/matrix interface where the transformation products were present significant fuel/matrix interaction had occurred. Relatively thin Si-rich interaction layers were also observed around the U-7Mo particles. In the thick interaction layers, (U)(Al, Si)3 and U6Mo4Al43 were identified, and in the thin interaction layers U(Al, Si)3, U3Si3Al2, U3Si5, and USi1.88-type phases were observed. The U3Si3Al2 phase contained some Mo. Based on the results of this work, exposure of dispersion fuel plates to relatively high temperatures during fabrication impacts the overall microstructure, particularly the nature of the interaction layers around the fuel particles. The time and temperature of fabrication should be carefully controlled in order to produce the most uniform Si-rich layers around the U-7Mo particles.