From Populations to Ecosystems

From Populations to Ecosystems

Author: Michel Loreau

Publisher: Princeton University Press

Published: 2010-07-01

Total Pages: 317

ISBN-13: 1400834163

DOWNLOAD EBOOK

The major subdisciplines of ecology--population ecology, community ecology, ecosystem ecology, and evolutionary ecology--have diverged increasingly in recent decades. What is critically needed today is an integrated, real-world approach to ecology that reflects the interdependency of biodiversity and ecosystem functioning. From Populations to Ecosystems proposes an innovative theoretical synthesis that will enable us to advance our fundamental understanding of ecological systems and help us to respond to today's emerging global ecological crisis. Michel Loreau begins by explaining how the principles of population dynamics and ecosystem functioning can be merged. He then addresses key issues in the study of biodiversity and ecosystems, such as functional complementarity, food webs, stability and complexity, material cycling, and metacommunities. Loreau describes the most recent theoretical advances that link the properties of individual populations to the aggregate properties of communities, and the properties of functional groups or trophic levels to the functioning of whole ecosystems, placing special emphasis on the relationship between biodiversity and ecosystem functioning. Finally, he turns his attention to the controversial issue of the evolution of entire ecosystems and their properties, laying the theoretical foundations for a genuine evolutionary ecosystem ecology. From Populations to Ecosystems points the way to a much-needed synthesis in ecology, one that offers a fuller understanding of ecosystem processes in the natural world.


Mathematical Ecology of Populations and Ecosystems

Mathematical Ecology of Populations and Ecosystems

Author: John Pastor

Publisher: John Wiley & Sons

Published: 2011-08-31

Total Pages: 358

ISBN-13: 1444358456

DOWNLOAD EBOOK

MATHEMATICAL ECOLOGY Population ecologists study how births and deaths affect the dynamics of populations and communities, while ecosystem ecologists study how species control the flux of energy and materials through food webs and ecosystems. Although all these processes occur simultaneously in nature, the mathematical frameworks bridging the two disciplines have developed independently. Consequently, this independent development of theory has impeded the cross-fertilization of population and ecosystem ecology. Using recent developments from dynamical systems theory, this advanced undergraduate/graduate level textbook shows how to bridge the two disciplines seamlessly. The book shows how bifurcations between the solutions of models can help understand regime shifts in natural populations and ecosystems once thresholds in rates of births, deaths, consumption, competition, nutrient inputs, and decay are crossed. Mathematical Ecology is essential reading for students of ecology who have had a first course in calculus and linear algebra or students in mathematics wishing to learn how dynamical systems theory can be applied to ecological problems.


Linking Species & Ecosystems

Linking Species & Ecosystems

Author: Clive G. Jones

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 403

ISBN-13: 1461517737

DOWNLOAD EBOOK

I was asked to introduce this volume by examining "why a knowledge of ecosys tem functioning can contribute to understanding species activities, dynamics, and assemblages." I have found it surprisingly difficult to address this topic. On the one hand, the answer is very simple and general: because all species live in ecosystems, they are part of and dependent on ecosystem processes. It is impossible to understand the abundance and distribution of populations and the species diversity and composition of communities without a knowledge of their abiotic and biotic environments and of the fluxes of energy and mat ter through the ecosystems of which they are a part. But everyone knows this. It is what ecology is all about (e.g., Likens, 1992). It is why the discipline has retained its integrity and thrived, despite a sometimes distressing degree of bickering and chauvinism among its various subdisciplines: physiological, be havioral, population, community, and ecosystem ecology.


Ecology

Ecology

Author: Michael Begon

Publisher: John Wiley & Sons

Published: 2020-11-17

Total Pages: 864

ISBN-13: 1119279313

DOWNLOAD EBOOK

A definitive guide to the depth and breadth of the ecological sciences, revised and updated The revised and updated fifth edition of Ecology: From Individuals to Ecosystems – now in full colour – offers students and practitioners a review of the ecological sciences. The previous editions of this book earned the authors the prestigious ‘Exceptional Life-time Achievement Award’ of the British Ecological Society – the aim for the fifth edition is not only to maintain standards but indeed to enhance its coverage of Ecology. In the first edition, 34 years ago, it seemed acceptable for ecologists to hold a comfortable, objective, not to say aloof position, from which the ecological communities around us were simply material for which we sought a scientific understanding. Now, we must accept the immediacy of the many environmental problems that threaten us and the responsibility of ecologists to play their full part in addressing these problems. This fifth edition addresses this challenge, with several chapters devoted entirely to applied topics, and examples of how ecological principles have been applied to problems facing us highlighted throughout the remaining nineteen chapters. Nonetheless, the authors remain wedded to the belief that environmental action can only ever be as sound as the ecological principles on which it is based. Hence, while trying harder than ever to help improve preparedness for addressing the environmental problems of the years ahead, the book remains, in its essence, an exposition of the science of ecology. This new edition incorporates the results from more than a thousand recent studies into a fully up-to-date text. Written for students of ecology, researchers and practitioners, the fifth edition of Ecology: From Individuals to Ecosystems is anessential reference to all aspects of ecology and addresses environmental problems of the future.


Perspectives in Ecological Theory

Perspectives in Ecological Theory

Author: Jonathan Roughgarden

Publisher: Princeton University Press

Published: 2014-07-14

Total Pages: 403

ISBN-13: 1400860180

DOWNLOAD EBOOK

This volume presents an overview of current accomplishments and future directions in ecological theory. The twenty-three chapters cover a broad range of important topics, from the physiology and behavior of individuals or groups of organisms, through population dynamics and community structure, to the ecology of ecosystems and the geochemical cycles of the entire biosphere. The authors focus on ways in which theory, whether expressed mathematically or verbally, can contribute to defining and solving fundamental problems in ecology. A second aim is to highlight areas where dialogue between theorists and empiricists is likely to be especially rewarding. The authors are R. M. Anderson, C. W. Clark, M. L. Cody, J. E. Cohen, P. R. Ehrlich, M. W. Feldman, M. E. Gilpin, L. J. Gross, M. P. Hassell, H. S. Horn, P. Kareiva, M.A.R. Koehl, S. A. Levin, R. M. May, L. D. Mueller, R. V. O'Neill, S. W. Pacala, S. L. Pimm, T. M. Powell, H. R. Pulliam, J. Roughgarden, W. H. Schlesinger, H. H. Shugart, S. M. Stanley, J. H. Steele, D. Tilman, J. Travis, and D. L. Urban. Originally published in 1989. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Population Ecology

Population Ecology

Author: Michael Begon

Publisher: John Wiley & Sons

Published: 2009-07-15

Total Pages: 257

ISBN-13: 1444313754

DOWNLOAD EBOOK

Worldwide, Population Ecology is the leading textbook on this titled subject. Written primarily for students, it describes the present state of population ecology in terms that can be readily understood by undergraduates with little or no background in the subject. Carefully chosen experimental examples illustrate each topic, and studies of plants and animals are combined to show how fundamental principles can be derived that apply to both species. Use of complex mathematics ia avoided throughout the book, and what math is necessary is dealt with by examination of real experimental data rather than dull theory. The latest edition of this leading textbook. Adopted as an Open University set text.


Population Ecology

Population Ecology

Author: John H. Vandermeer

Publisher: Princeton University Press

Published: 2013-08-25

Total Pages: 289

ISBN-13: 1400848733

DOWNLOAD EBOOK

The essential introduction to population ecology—now expanded and fully updated Ecology is capturing the popular imagination like never before, with issues such as climate change, species extinctions, and habitat destruction becoming ever more prominent. At the same time, the science of ecology has advanced dramatically, growing in mathematical and theoretical sophistication. Here, two leading experts present the fundamental quantitative principles of ecology in an accessible yet rigorous way, introducing students to the most basic of all ecological subjects, the structure and dynamics of populations. John Vandermeer and Deborah Goldberg show that populations are more than simply collections of individuals. Complex variables such as distribution and territory for expanding groups come into play when mathematical models are applied. Vandermeer and Goldberg build these models from the ground up, from first principles, using a broad range of empirical examples, from animals and viruses to plants and humans. They address a host of exciting topics along the way, including age-structured populations, spatially distributed populations, and metapopulations. This second edition of Population Ecology is fully updated and expanded, with additional exercises in virtually every chapter, making it the most up-to-date and comprehensive textbook of its kind. Provides an accessible mathematical foundation for the latest advances in ecology Features numerous exercises and examples throughout Introduces students to the key literature in the field The essential textbook for advanced undergraduates and graduate students An online illustration package is available to professors


Ecology and Ecosystem Conservation

Ecology and Ecosystem Conservation

Author: Oswald J. Schmitz

Publisher: Island Press

Published: 2013-03-19

Total Pages: 179

ISBN-13: 1597265985

DOWNLOAD EBOOK

Meeting today’s environmental challenges requires a new way of thinking about the intricate dependencies between humans and nature. Ecology and Ecosystem Conservation provides students and other readers with a basic understanding of the fundamental principles of ecological science and their applications, offering an essential overview of the way ecology can be used to devise strategies to conserve the health and functioning of ecosystems. The book begins by exploring the need for ecological science in understanding current environmental issues and briefly discussing what ecology is and isn’t. Subsequent chapters address critical issues in conservation and show how ecological science can be applied to them. The book explores questions such as: • What is the role of ecological science in decision making? • What factors govern the assembly of ecosystems and determine their response to various stressors? • How does Earth’s climate system function and determine the distribution of life on Earth? • What factors control the size of populations? • How does fragmentation of the landscape affect the persistence of species on the landscape? • How does biological diversity influence ecosystem processes? The book closes with a final chapter that addresses the need not only to understand ecological science, but to put that science into an ecosystem conservation ethics perspective.


Resolving Ecosystem Complexity

Resolving Ecosystem Complexity

Author: Oswald J. Schmitz

Publisher: Princeton University Press

Published: 2010-07-01

Total Pages: 193

ISBN-13: 1400834171

DOWNLOAD EBOOK

An ecosystem's complexity develops from the vast numbers of species interacting in ecological communities. The nature of these interactions, in turn, depends on environmental context. How do these components together influence an ecosystem's behavior as a whole? Can ecologists resolve an ecosystem's complexity in order to predict its response to disturbances? Resolving Ecosystem Complexity develops a framework for anticipating the ways environmental context determines the functioning of ecosystems. Oswald Schmitz addresses the critical questions of contemporary ecology: How should an ecosystem be conceptualized to blend its biotic and biophysical components? How should evolutionary ecological principles be used to derive an operational understanding of complex, adaptive ecosystems? How should the relationship between the functional biotic diversity of ecosystems and their properties be understood? Schmitz begins with the universal concept that ecosystems are comprised of species that consume resources and which are then resources for other consumers. From this, he deduces a fundamental rule or evolutionary ecological mechanism for explaining context dependency: individuals within a species trade off foraging gains against the risk of being consumed by predators. Through empirical examples, Schmitz illustrates how species use evolutionary ecological strategies to negotiate a predator-eat-predator world, and he suggests that the implications of species trade-offs are critical to making ecology a predictive science. Bridging the traditional divides between individuals, populations, and communities in ecology, Resolving Ecosystem Complexity builds a systematic foundation for thinking about natural systems.