From Maxwell's Equations to Free and Guided Electromagnetic Waves

From Maxwell's Equations to Free and Guided Electromagnetic Waves

Author: Manuel Quesada-Pérez

Publisher: Physics Research and Technology

Published: 2014

Total Pages: 0

ISBN-13: 9781631174537

DOWNLOAD EBOOK

Maxwell's equations and the discovery of electromagnetic waves changed the world. Can you imagine how our everyday life would be without telephone, radio, television, mobile phones and internet? It's thanks to Maxwell's equations that we understand what electromagnetic waves are and how they are generated, propagated and detected. These equations can even change our perception of nature when they are really understood, but their power and elegance is completely appreciated when they are expressed in differential form. Moreover, this form is extremely useful dealing with some issues, such as the propagation of electromagnetic waves.


Maxwell on the Electromagnetic Field

Maxwell on the Electromagnetic Field

Author: Thomas K. Simpson

Publisher: Rutgers University Press

Published: 1997

Total Pages: 468

ISBN-13: 9780813523637

DOWNLOAD EBOOK

Reproduces major portions of Maxwell's classic papers on key concepts in modern physics, written between 1855 and 1864, along with commentaries, notes, and bandw diagrams. Includes a detailed biographical introduction exploring the personal, historical, and scientific context of his work. Designed to be accessible to readers with limited knowledge of math or physics, as well as scientists and historians of science. Annotation copyright by Book News, Inc., Portland, OR


A Student's Guide to Maxwell's Equations

A Student's Guide to Maxwell's Equations

Author: Daniel Fleisch

Publisher: Cambridge University Press

Published: 2008-01-10

Total Pages: 129

ISBN-13: 1139468472

DOWNLOAD EBOOK

Gauss's law for electric fields, Gauss's law for magnetic fields, Faraday's law, and the Ampere–Maxwell law are four of the most influential equations in science. In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.


Electricity and Magnetism for Mathematicians

Electricity and Magnetism for Mathematicians

Author: Thomas A. Garrity

Publisher: Cambridge University Press

Published: 2015-01-19

Total Pages: 297

ISBN-13: 1107435161

DOWNLOAD EBOOK

Maxwell's equations have led to many important mathematical discoveries. This text introduces mathematics students to some of their wonders.


Electromagnetic Waves, Materials, and Computation with MATLAB®

Electromagnetic Waves, Materials, and Computation with MATLAB®

Author: Dikshitulu K. Kalluri

Publisher: CRC Press

Published: 2011-08-17

Total Pages: 889

ISBN-13: 1439838674

DOWNLOAD EBOOK

Readily available commercial software enables engineers and students to perform routine calculations and design without necessarily having a sufficient conceptual understanding of the anticipated solution. The software is so user-friendly that it usually produces a beautiful colored visualization of that solution, often camouflaging the fact that the program is executing the wrong simulation of the physical problem. Electromagnetic Waves, Materials, and Computation with MATLAB® takes an integrative modern approach to the subject of electromagnetic analysis by supplementing quintessential "old school" information and methods with instruction in the use of newer commercial software such as MATLAB and methods including FDTD. Delving into the electromagnetics of bounded simple media, equations of complex media, and computation, this text includes: Appendices that cover a wide range of associated issues and techniques A concluding section containing an array of problems, quizzes, and examinations A downloadable component for instructors including PowerPointTM slides, solutions to problems, and more Striking a balance between theoretical and practical aspects, internationally recognized expert Dikshitulu Kalluri clearly illustrates how intuitive approximate solutions are derived. Providing case studies and practical examples throughout, he examines the role of commercial software in this process, also covering interpretation of findings. Kalluri’s extensive experience teaching this subject enables him to streamline and convey material in a way that helps readers master conceptual mathematical aspects. This gives them confidence in their ability to use high-level software to write code, but it also ensures that they will never be solely dependent on such programs.


Transmission and Propagation of Electromagnetic Waves

Transmission and Propagation of Electromagnetic Waves

Author: K. F. Sander

Publisher: CUP Archive

Published: 1986-10-23

Total Pages: 470

ISBN-13: 9780521311922

DOWNLOAD EBOOK

This edition of an established textbook presents aspects of electromagnetic theory of direct relevance to the transmission of information by electromagnetic waves. In revising the first edition the authors have taken the opportunity to extend the coverage significantly by adding new material on optical transmission. Throughout, the theory is applied to the working of practical systems, and the constraints imposed by fundamental properties are emphasised.


Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB®

Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB®

Author: Raymond C. Rumpf

Publisher: Artech House

Published: 2022-01-31

Total Pages: 350

ISBN-13: 1630819271

DOWNLOAD EBOOK

This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.


Primary Theory of Electromagnetics

Primary Theory of Electromagnetics

Author: Hyo J. Eom

Publisher: Springer Science & Business Media

Published: 2013-08-31

Total Pages: 208

ISBN-13: 9400771436

DOWNLOAD EBOOK

This is a textbook on electromagnetics for undergraduate students in electrical engineering, information, and communications. The book contents are very compact and brief compared to other commonly known electromagnetic books for undergraduate students and emphasizes mathematical aspects of basic electromagnetic theory. The book presents basic electromagnetic theory starting from static fields to time-varying fields. Topics are divided into static electric fields, static magnetic fields, time-varying fields, and electromagnetic waves. The goal of this textbook is to lead students away from memorization, but towards a deeper understanding of formulas that are used in electromagnetic theory. Many formulas commonly used for electromagnetic analysis are mathematically derived from a few empirical laws. Physical interpretations of formulas are de-emphasized. Each important formula is framed to indicate its significance. Primary Theory of Electromagnetics shows a clear and rigorous account of formulas in a consistent manner, thus letting students understand how electromagnetic formulas are related to each other.


FDTD Analysis of Guided Electromagnetic Wave Interaction with Time-Modulated Dielectric Medium

FDTD Analysis of Guided Electromagnetic Wave Interaction with Time-Modulated Dielectric Medium

Author: Debdeep Sarkar

Publisher: Springer Nature

Published: 2022-04-22

Total Pages: 91

ISBN-13: 9811916306

DOWNLOAD EBOOK

This book presents a detailed analytical and computational electromagnetic (CEM) treatment of guided electromagnetic (EM) wave propagation in independently time-varying dielectric medium, using the finite-difference time-domain (FDTD) simulation technique. The contents provide an extensive literature review, explaining the importance of time-varying media (temporal photonic crystals) in new exotic applications that involve rich EM phenomena such as parametric amplification, frequency conversion, non-reciprocal gain, electromagnetic energy accumulation, temporal coating and temporal aiming (beam-forming). A one-dimensional (1D) FDTD simulation paradigm is then formulated in this book, starting from Maxwell's equations and boundary conditions. The issues of hard/soft source realizations, perfectly matched layers (PMLs), choice of simulation parameters (cell-size and time-stepping) are thoroughly explained through new visualization tools. This book provides a unique combination of rigorous analytical techniques, several FDTD simulation examples with reproducible source-codes, and new visualization/post-processing mechanisms. The contents of this book should prove to be useful for students, research scholars, scientists and engineers, working in the field of applied electromagnetics, and aiming to design cutting-edge microwave/optical devices based on time-varying medium.


Electromagnetic Radiation, Scattering, and Diffraction

Electromagnetic Radiation, Scattering, and Diffraction

Author: Prabhakar H. Pathak

Publisher: John Wiley & Sons

Published: 2021-12-21

Total Pages: 1156

ISBN-13: 1119810515

DOWNLOAD EBOOK

Electromagnetic Radiation, Scattering, and Diffraction Discover a graduate-level text for students specializing in electromagnetic wave radiation, scattering, and diffraction for engineering applications In Electromagnetic Radiation, Scattering and Diffraction, distinguished authors Drs. Prabhakar H. Pathak and Robert J. Burkholder deliver a thorough exploration of the behavior of electromagnetic fields in radiation, scattering, and guided wave environments. The book tackles its subject from first principles and includes coverage of low and high frequencies. It stresses physical interpretations of the electromagnetic wave phenomena along with their underlying mathematics. The authors emphasize fundamental principles and provide numerous examples to illustrate the concepts contained within. Students with a limited undergraduate electromagnetic background will rapidly and systematically advance their understanding of electromagnetic wave theory until they can complete useful and important graduate-level work on electromagnetic wave problems. Electromagnetic Radiation, Scattering and Diffraction also serves as a practical companion for students trying to simulate problems with commercial EM software and trying to better interpret their results. Readers will also benefit from the breadth and depth of topics, such as: Basic equations governing all electromagnetic (EM) phenomena at macroscopic scales are presented systematically. Stationary and relativistic moving boundary conditions are developed. Waves in planar multilayered isotropic and anisotropic media are analyzed. EM theorems are introduced and applied to a variety of useful antenna problems. Modal techniques are presented for analyzing guided wave and periodic structures. Potential theory and Green's function methods are developed to treat interior and exterior EM problems. Asymptotic High Frequency methods are developed for evaluating radiation Integrals to extract ray fields. Edge and surface diffracted ray fields, as well as surface, leaky and lateral wave fields are obtained. A collective ray analysis for finite conformal antenna phased arrays is developed. EM beams are introduced and provide useful basis functions. Integral equations and their numerical solutions via the method of moments are developed. The fast multipole method is presented. Low frequency breakdown is studied. Characteristic modes are discussed. Perfect for graduate students studying electromagnetic theory, Electromagnetic Radiation, Scattering, and Diffraction is an invaluable resource for professional electromagnetic engineers and researchers working in this area.