Random Graphs

Random Graphs

Author: Svante Janson

Publisher: John Wiley & Sons

Published: 2011-09-30

Total Pages: 350

ISBN-13: 1118030966

DOWNLOAD EBOOK

A unified, modern treatment of the theory of random graphs-including recent results and techniques Since its inception in the 1960s, the theory of random graphs has evolved into a dynamic branch of discrete mathematics. Yet despite the lively activity and important applications, the last comprehensive volume on the subject is Bollobas's well-known 1985 book. Poised to stimulate research for years to come, this new work covers developments of the last decade, providing a much-needed, modern overview of this fast-growing area of combinatorics. Written by three highly respected members of the discrete mathematics community, the book incorporates many disparate results from across the literature, including results obtained by the authors and some completely new results. Current tools and techniques are also thoroughly emphasized. Clear, easily accessible presentations make Random Graphs an ideal introduction for newcomers to the field and an excellent reference for scientists interested in discrete mathematics and theoretical computer science. Special features include: * A focus on the fundamental theory as well as basic models of random graphs * A detailed description of the phase transition phenomenon * Easy-to-apply exponential inequalities for large deviation bounds * An extensive study of the problem of containing small subgraphs * Results by Bollobas and others on the chromatic number of random graphs * The result by Robinson and Wormald on the existence of Hamilton cycles in random regular graphs * A gentle introduction to the zero-one laws * Ample exercises, figures, and bibliographic references


Geometric and Topological Inference

Geometric and Topological Inference

Author: Jean-Daniel Boissonnat

Publisher: Cambridge University Press

Published: 2018-09-27

Total Pages: 247

ISBN-13: 1108419399

DOWNLOAD EBOOK

A rigorous introduction to geometric and topological inference, for anyone interested in a geometric approach to data science.


Simplicial Complexes of Graphs

Simplicial Complexes of Graphs

Author: Jakob Jonsson

Publisher: Springer Science & Business Media

Published: 2007-11-15

Total Pages: 376

ISBN-13: 3540758585

DOWNLOAD EBOOK

A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology. Many of the proofs are based on Robin Forman's discrete version of Morse theory.


Handbook of Discrete and Computational Geometry

Handbook of Discrete and Computational Geometry

Author: Csaba D. Toth

Publisher: CRC Press

Published: 2017-11-22

Total Pages: 1928

ISBN-13: 1498711421

DOWNLOAD EBOOK

The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.


Random Walks on Infinite Graphs and Groups

Random Walks on Infinite Graphs and Groups

Author: Wolfgang Woess

Publisher: Cambridge University Press

Published: 2000-02-13

Total Pages: 350

ISBN-13: 0521552923

DOWNLOAD EBOOK

The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.


Probabilistic Methods in Geometry, Topology and Spectral Theory

Probabilistic Methods in Geometry, Topology and Spectral Theory

Author: Yaiza Canzani

Publisher: American Mathematical Soc.

Published: 2019-11-20

Total Pages: 208

ISBN-13: 1470441454

DOWNLOAD EBOOK

This volume contains the proceedings of the CRM Workshops on Probabilistic Methods in Spectral Geometry and PDE, held from August 22–26, 2016 and Probabilistic Methods in Topology, held from November 14–18, 2016 at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada. Probabilistic methods have played an increasingly important role in many areas of mathematics, from the study of random groups and random simplicial complexes in topology, to the theory of random Schrödinger operators in mathematical physics. The workshop on Probabilistic Methods in Spectral Geometry and PDE brought together some of the leading researchers in quantum chaos, semi-classical theory, ergodic theory and dynamical systems, partial differential equations, probability, random matrix theory, mathematical physics, conformal field theory, and random graph theory. Its emphasis was on the use of ideas and methods from probability in different areas, such as quantum chaos (study of spectra and eigenstates of chaotic systems at high energy); geometry of random metrics and related problems in quantum gravity; solutions of partial differential equations with random initial conditions. The workshop Probabilistic Methods in Topology brought together researchers working on random simplicial complexes and geometry of spaces of triangulations (with connections to manifold learning); topological statistics, and geometric probability; theory of random groups and their properties; random knots; and other problems. This volume covers recent developments in several active research areas at the interface of Probability, Semiclassical Analysis, Mathematical Physics, Theory of Automorphic Forms and Graph Theory.


Computational Topology

Computational Topology

Author: Herbert Edelsbrunner

Publisher: American Mathematical Society

Published: 2022-01-31

Total Pages: 241

ISBN-13: 1470467690

DOWNLOAD EBOOK

Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.


The Random-Cluster Model

The Random-Cluster Model

Author: Geoffrey R. Grimmett

Publisher: Springer Science & Business Media

Published: 2006-12-13

Total Pages: 392

ISBN-13: 3540328912

DOWNLOAD EBOOK

The random-cluster model has emerged as a key tool in the mathematical study of ferromagnetism. It may be viewed as an extension of percolation to include Ising and Potts models, and its analysis is a mix of arguments from probability and geometry. The Random-Cluster Model contains accounts of the subcritical and supercritical phases, together with clear statements of important open problems. The book includes treatment of the first-order (discontinuous) phase transition.


Surveys in Combinatorics 2015

Surveys in Combinatorics 2015

Author: Artur Czumaj

Publisher: Cambridge University Press

Published: 2015-07-02

Total Pages: 333

ISBN-13: 1316432629

DOWNLOAD EBOOK

This volume contains nine survey articles based on the invited lectures given at the 25th British Combinatorial Conference, held at the University of Warwick in July 2015. This biennial conference is a well-established international event, with speakers from around the world. The volume provides an up-to-date overview of current research in several areas of combinatorics, including graph theory, Ramsey theory, combinatorial geometry and curves over finite fields. Each article is clearly written and assumes little prior knowledge on the part of the reader. The authors are some of the world's foremost researchers in their fields, and here they summarise existing results and give a unique preview of cutting-edge developments. The book provides a valuable survey of the present state of knowledge in combinatorics, and will be useful to researchers and advanced graduate students, primarily in mathematics but also in computer science and statistics.


Random Geometric Graphs

Random Geometric Graphs

Author: Mathew Penrose

Publisher: Oxford University Press

Published: 2003

Total Pages: 345

ISBN-13: 0198506260

DOWNLOAD EBOOK

This monograph provides and explains the mathematics behind geometric graph theory. Applications of this theory are used on the study of neural networks, spread of disease, astrophysics and spatial statistics.